ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.07827
  4. Cited By
Second-Order Optimization for Non-Convex Machine Learning: An Empirical
  Study

Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

25 August 2017
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
    ODL
ArXivPDFHTML

Papers citing "Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study"

20 / 20 papers shown
Title
Online Control-Informed Learning
Online Control-Informed Learning
Zihao Liang
Tianyu Zhou
Zehui Lu
Shaoshuai Mou
33
1
0
04 Oct 2024
Newton Method-based Subspace Support Vector Data Description
Newton Method-based Subspace Support Vector Data Description
Fahad Sohrab
Firas Laakom
Moncef Gabbouj
19
5
0
25 Sep 2023
PyPop7: A Pure-Python Library for Population-Based Black-Box
  Optimization
PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization
Qiqi Duan
Guochen Zhou
Chang Shao
Zhuowei Wang
Mingyang Feng
Yuwei Huang
Yajing Tan
Yijun Yang
Qi Zhao
Yuhui Shi
34
5
0
12 Dec 2022
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for
  Minimax Optimization
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for Minimax Optimization
Yihang Gao
Huafeng Liu
Michael K. Ng
Mingjie Zhou
25
2
0
23 May 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
  Convergence
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
Distributed Learning With Sparsified Gradient Differences
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
slimTrain -- A Stochastic Approximation Method for Training Separable
  Deep Neural Networks
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
47
6
0
28 Sep 2021
Nonlinear Least Squares for Large-Scale Machine Learning using
  Stochastic Jacobian Estimates
Nonlinear Least Squares for Large-Scale Machine Learning using Stochastic Jacobian Estimates
Johannes J Brust
8
2
0
12 Jul 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level
  optimization and implicit models
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
31
28
0
01 Jun 2021
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
11
10
0
06 Jun 2020
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
39
275
0
01 Jun 2020
An Inertial Newton Algorithm for Deep Learning
An Inertial Newton Algorithm for Deep Learning
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
PINN
ODL
20
62
0
29 May 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
Parameter Re-Initialization through Cyclical Batch Size Schedules
Parameter Re-Initialization through Cyclical Batch Size Schedules
Norman Mu
Z. Yao
A. Gholami
Kurt Keutzer
Michael W. Mahoney
ODL
30
8
0
04 Dec 2018
Structured Local Optima in Sparse Blind Deconvolution
Structured Local Optima in Sparse Blind Deconvolution
Yuqian Zhang
Han-Wen Kuo
John N. Wright
26
56
0
01 Jun 2018
GPU Accelerated Sub-Sampled Newton's Method
GPU Accelerated Sub-Sampled Newton's Method
Sudhir B. Kylasa
Farbod Roosta-Khorasani
Michael W. Mahoney
A. Grama
ODL
26
8
0
26 Feb 2018
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1