ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.07180
  4. Cited By
Bootstrapping the Out-of-sample Predictions for Efficient and Accurate
  Cross-Validation

Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation

23 August 2017
Ioannis Tsamardinos
Elissavet Greasidou
Michalis Tsagris
Giorgos Borboudakis
    OnRL
ArXivPDFHTML

Papers citing "Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation"

10 / 10 papers shown
Title
Towards Automated Causal Discovery: a case study on 5G telecommunication
  data
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
36
0
0
22 Feb 2024
Post-Selection Confidence Bounds for Prediction Performance
Post-Selection Confidence Bounds for Prediction Performance
Pascal Rink
W. Brannath
32
1
0
24 Oct 2022
The leap to ordinal: detailed functional prognosis after traumatic brain
  injury with a flexible modelling approach
The leap to ordinal: detailed functional prognosis after traumatic brain injury with a flexible modelling approach
Shubhayu Bhattacharyay
Ioan Milosevic
L. Wilson
D. Menon
R. Stevens
E. Steyerberg
D. Nelson
A. Ercole
the CENTER-TBI investigators/participants
20
15
0
10 Feb 2022
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
14
90
0
24 Jun 2020
Learning Gradient Boosted Multi-label Classification Rules
Learning Gradient Boosted Multi-label Classification Rules
Michael Rapp
E. Mencía
Johannes Furnkranz
Vu-Linh Nguyen
Eyke Hüllermeier
13
25
0
23 Jun 2020
Bootstrap Bias Corrected Cross Validation applied to Super Learning
Bootstrap Bias Corrected Cross Validation applied to Super Learning
Krzysztof Mnich
A. Golinska
A. Polewko-Klim
W. Rudnicki
7
3
0
18 Mar 2020
Multi-classifier prediction of knee osteoarthritis progression from
  incomplete imbalanced longitudinal data
Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data
P. Widera
P. Welsing
C. Ladel
J. Loughlin
F. Lafeber
F. Dop
J. Larkin
H. Weinans
A. Mobasheri
J. Bacardit
41
54
0
30 Sep 2019
Robust parametric modeling of Alzheimer's disease progression
Robust parametric modeling of Alzheimer's disease progression
Mostafa Mehdipour-Ghazi
Mads Nielsen
A. Pai
Marc Modat
M. Jorge Cardoso
Sébastien Ourselin
Lauge Sørensen
OOD
16
22
0
14 Aug 2019
Forward-Backward Selection with Early Dropping
Forward-Backward Selection with Early Dropping
Giorgos Borboudakis
Ioannis Tsamardinos
34
95
0
30 May 2017
1