ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.05932
  4. Cited By
Fundamental Limits of Weak Recovery with Applications to Phase Retrieval

Fundamental Limits of Weak Recovery with Applications to Phase Retrieval

20 August 2017
Marco Mondelli
Andrea Montanari
ArXivPDFHTML

Papers citing "Fundamental Limits of Weak Recovery with Applications to Phase Retrieval"

18 / 18 papers shown
Title
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
35
6
0
14 Aug 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
70
12
0
24 May 2024
Misspecified Phase Retrieval with Generative Priors
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
46
4
0
11 Oct 2022
Compressing Sign Information in DCT-based Image Coding via Deep Sign
  Retrieval
Compressing Sign Information in DCT-based Image Coding via Deep Sign Retrieval
Kei Suzuki
Chihiro Tsutake
Keita Takahashi
T. Fujii
26
3
0
21 Sep 2022
Fundamental limits to learning closed-form mathematical models from data
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
M. Sales-Pardo
R. Guimerà
30
19
0
06 Apr 2022
Bayesian Inversion for Nonlinear Imaging Models using Deep Generative
  Priors
Bayesian Inversion for Nonlinear Imaging Models using Deep Generative Priors
Pakshal Bohra
Thanh-an Michel Pham
Jonathan Dong
M. Unser
MedIm
23
11
0
18 Mar 2022
Estimation in Rotationally Invariant Generalized Linear Models via
  Approximate Message Passing
Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
R. Venkataramanan
Kevin Kögler
Marco Mondelli
27
32
0
08 Dec 2021
Spectral Methods for Data Science: A Statistical Perspective
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
Phase retrieval in high dimensions: Statistical and computational phase
  transitions
Phase retrieval in high dimensions: Statistical and computational phase transitions
Antoine Maillard
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
26
57
0
09 Jun 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
29
86
0
16 May 2020
The estimation error of general first order methods
The estimation error of general first order methods
Michael Celentano
Andrea Montanari
Yuchen Wu
14
44
0
28 Feb 2020
Analysis of Spectral Methods for Phase Retrieval with Random Orthogonal
  Matrices
Analysis of Spectral Methods for Phase Retrieval with Random Orthogonal Matrices
Rishabh Dudeja
Milad Bakhshizadeh
Junjie Ma
A. Maleki
21
20
0
07 Mar 2019
Lifting high-dimensional nonlinear models with Gaussian regressors
Lifting high-dimensional nonlinear models with Gaussian regressors
Christos Thrampoulidis
A. S. Rawat
21
8
0
11 Dec 2017
Optimal Errors and Phase Transitions in High-Dimensional Generalized
  Linear Models
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
31
259
0
10 Aug 2017
Phase Transitions of Spectral Initialization for High-Dimensional
  Nonconvex Estimation
Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation
Yue M. Lu
Gen Li
23
89
0
21 Feb 2017
The Projected Power Method: An Efficient Algorithm for Joint Alignment
  from Pairwise Differences
The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences
Yuxin Chen
Emmanuel Candes
40
92
0
19 Sep 2016
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
65
145
0
29 Mar 2015
Phase Diagram and Approximate Message Passing for Blind Calibration and
  Dictionary Learning
Phase Diagram and Approximate Message Passing for Blind Calibration and Dictionary Learning
Florent Krzakala
M. Mézard
Lenka Zdeborová
75
37
0
24 Jan 2013
1