ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.04846
11
22

Maximum A Posteriori Inference in Sum-Product Networks

16 August 2017
Jun-Feng Mei
Yong-jia Jiang
Kewei Tu
    TPM
ArXivPDFHTML
Abstract

Sum-product networks (SPNs) are a class of probabilistic graphical models that allow tractable marginal inference. However, the maximum a posteriori (MAP) inference in SPNs is NP-hard. We investigate MAP inference in SPNs from both theoretical and algorithmic perspectives. For the theoretical part, we reduce general MAP inference to its special case without evidence and hidden variables; we also show that it is NP-hard to approximate the MAP problem to 2nϵ2^{n^\epsilon}2nϵ for fixed 0≤ϵ<10 \leq \epsilon < 10≤ϵ<1, where nnn is the input size. For the algorithmic part, we first present an exact MAP solver that runs reasonably fast and could handle SPNs with up to 1k variables and 150k arcs in our experiments. We then present a new approximate MAP solver with a good balance between speed and accuracy, and our comprehensive experiments on real-world datasets show that it has better overall performance than existing approximate solvers.

View on arXiv
Comments on this paper