ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.04483
  4. Cited By
Learning with Rethinking: Recurrently Improving Convolutional Neural
  Networks through Feedback

Learning with Rethinking: Recurrently Improving Convolutional Neural Networks through Feedback

15 August 2017
Xuzhao Li
Zequn Jie
Jiashi Feng
Changsong Liu
Shuicheng Yan
    SSL
ArXivPDFHTML

Papers citing "Learning with Rethinking: Recurrently Improving Convolutional Neural Networks through Feedback"

6 / 6 papers shown
Title
Multi-Agent Feedback Enabled Neural Networks for Intelligent
  Communications
Multi-Agent Feedback Enabled Neural Networks for Intelligent Communications
Fanglei Sun
Yang Li
Ying Wen
Jin Hu
Jun Wang
Yang Yang
Kai Li
29
1
0
22 May 2022
Hierarchical Interaction Networks with Rethinking Mechanism for
  Document-level Sentiment Analysis
Hierarchical Interaction Networks with Rethinking Mechanism for Document-level Sentiment Analysis
Lingwei Wei
Dou Hu
Wei Zhou
Xuehai Tang
Xiaodan Zhang
Xin Wang
Jizhong Han
Songlin Hu
33
11
0
16 Jul 2020
Recurrent Feedback Improves Feedforward Representations in Deep Neural
  Networks
Recurrent Feedback Improves Feedforward Representations in Deep Neural Networks
Siming Yan
Xuyang Fang
Bowen Xiao
Harold Rockwell
Yimeng Zhang
T. Lee
SSL
21
7
0
22 Dec 2019
Distributed Iterative Gating Networks for Semantic Segmentation
Distributed Iterative Gating Networks for Semantic Segmentation
Rezaul Karim
Md. Amirul Islam
Neil D. B. Bruce
16
5
0
28 Sep 2019
Task-Driven Convolutional Recurrent Models of the Visual System
Task-Driven Convolutional Recurrent Models of the Visual System
Aran Nayebi
Daniel M. Bear
J. Kubilius
Kohitij Kar
Surya Ganguli
David Sussillo
J. DiCarlo
Daniel L. K. Yamins
18
150
0
20 Jun 2018
The Application of Two-level Attention Models in Deep Convolutional
  Neural Network for Fine-grained Image Classification
The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification
Tianjun Xiao
Yichong Xu
Kuiyuan Yang
Jiaxing Zhang
Yuxin Peng
Zheng-Wei Zhang
158
789
0
24 Nov 2014
1