Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.03731
Cited By
OpenML Benchmarking Suites
11 August 2017
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLM
ELM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"OpenML Benchmarking Suites"
35 / 35 papers shown
Title
Tabular Embeddings for Tables with Bi-Dimensional Hierarchical Metadata and Nesting
Gyanendra Shrestha
Chutain Jiang
Sai Akula
Vivek Yannam
Anna Pyayt
Michael Gubanov
LMTD
97
0
0
20 Feb 2025
EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Michael Arbel
David Salinas
Frank Hutter
73
2
0
10 Feb 2025
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
46
3
0
26 Jun 2024
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
Valentin Margraf
Marcel Wever
Sandra Gilhuber
Gabriel Marques Tavares
Thomas Seidl
Eyke Hüllermeier
44
0
0
25 Jun 2024
AnnotatedTables: A Large Tabular Dataset with Language Model Annotations
Yaojie Hu
Ilias Fountalis
Jin Tian
N. Vasiloglou
LMTD
36
3
0
24 Jun 2024
HyperFast: Instant Classification for Tabular Data
David Bonet
D. M. Montserrat
Xavier Giró-i-Nieto
A. Ioannidis
46
15
0
22 Feb 2024
Had enough of experts? Quantitative knowledge retrieval from large language models
David Selby
Kai Spriestersbach
Yuichiro Iwashita
Dennis Bappert
Archana Warrier
Sumantrak Mukherjee
Muhammad Nabeel Asim
Koichi Kise
Sebastian Vollmer
44
0
0
12 Feb 2024
A Survey on Self-Supervised Learning for Non-Sequential Tabular Data
Wei-Yao Wang
Wei-Wei Du
Derek Xu
Wei Wang
Wenjie Peng
LMTD
38
7
0
02 Feb 2024
Prevalidated ridge regression is a highly-efficient drop-in replacement for logistic regression for high-dimensional data
Angus Dempster
Geoffrey I. Webb
Daniel F. Schmidt
29
0
0
28 Jan 2024
MotherNet: Fast Training and Inference via Hyper-Network Transformers
Andreas Müller
Carlo Curino
Raghu Ramakrishnan
LMTD
43
2
0
14 Dec 2023
CAST: Cluster-Aware Self-Training for Tabular Data
Minwook Kim
Juseong Kim
Kibeom Kim
Giltae Song
33
0
0
10 Oct 2023
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
Lennart Schneider
B. Bischl
Janek Thomas
30
6
0
17 Jul 2023
STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables
Jaehyun Nam
Jihoon Tack
Kyungmin Lee
Hankook Lee
Jinwoo Shin
LMTD
SSL
18
31
0
02 Mar 2023
Towards Personalized Preprocessing Pipeline Search
Diego Martinez
Daochen Zha
Qiaoyu Tan
Xia Hu
AI4TS
29
2
0
28 Feb 2023
Conceptual Views on Tree Ensemble Classifiers
Tom Hanika
Johannes Hirth
37
4
0
10 Feb 2023
Task Selection for AutoML System Evaluation
Jon Lorraine
Nihesh Anderson
Chansoo Lee
Quentin de Laroussilhe
Mehadi Hassen
46
4
0
26 Aug 2022
A Bayesian Bradley-Terry model to compare multiple ML algorithms on multiple data sets
Jacques Wainer
13
10
0
09 Aug 2022
AMLB: an AutoML Benchmark
Pieter Gijsbers
Marcos L. P. Bueno
Stefan Coors
E. LeDell
Sébastien Poirier
Janek Thomas
B. Bischl
Joaquin Vanschoren
38
53
0
25 Jul 2022
Why do tree-based models still outperform deep learning on tabular data?
Léo Grinsztajn
Edouard Oyallon
Gaël Varoquaux
LMTD
35
356
0
18 Jul 2022
A novel evaluation methodology for supervised Feature Ranking algorithms
Jeroen G. S. Overschie
16
0
0
09 Jul 2022
Hyperparameter Importance of Quantum Neural Networks Across Small Datasets
Charles Moussa
Jan N. van Rijn
Thomas Bäck
Vedran Dunjko
27
12
0
20 Jun 2022
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
Zhen Wang
Weirui Kuang
Ce Zhang
Bolin Ding
Yaliang Li
FedML
25
13
0
08 Jun 2022
SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning
Talip Uçar
Ehsan Hajiramezanali
Lindsay Edwards
LMTD
SSL
30
124
0
08 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
Test for non-negligible adverse shifts
Vathy M. Kamulete
15
3
0
07 Jul 2021
SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
SSL
19
163
0
29 Jun 2021
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray
23
3
0
17 Jun 2020
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
31
77
0
08 Jun 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
97
607
0
13 Mar 2020
OpenML-Python: an extensible Python API for OpenML
Matthias Feurer
Jan N. van Rijn
Arlind Kadra
Pieter Gijsbers
Neeratyoy Mallik
Sahithya Ravi
Andreas Müller
Joaquin Vanschoren
Frank Hutter
ELM
GP
20
87
0
06 Nov 2019
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development
Micah J. Smith
Carles Sala Cladellas
James Max Kanter
K. Veeramachaneni
22
49
0
22 May 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Hyperparameters and Tuning Strategies for Random Forest
Philipp Probst
Marvin N. Wright
A. Boulesteix
19
1,351
0
10 Apr 2018
1