Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.03708
Cited By
Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks
11 August 2017
Surbhi Goel
Adam R. Klivans
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks"
10 / 10 papers shown
Title
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
21
5
0
25 Jul 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
45
183
0
10 Mar 2020
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
23
57
0
21 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
30
17
0
20 May 2018
Learning One Convolutional Layer with Overlapping Patches
Surbhi Goel
Adam R. Klivans
Raghu Meka
MLT
26
80
0
07 Feb 2018
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
Matrix Coherence and the Nystrom Method
Ameet Talwalkar
Afshin Rostamizadeh
96
88
0
09 Aug 2014
1