ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.01012
  4. Cited By
On the convergence properties of a $K$-step averaging stochastic
  gradient descent algorithm for nonconvex optimization

On the convergence properties of a KKK-step averaging stochastic gradient descent algorithm for nonconvex optimization

3 August 2017
Fan Zhou
Guojing Cong
ArXivPDFHTML

Papers citing "On the convergence properties of a $K$-step averaging stochastic gradient descent algorithm for nonconvex optimization"

41 / 141 papers shown
Title
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
22
199
0
08 Jun 2020
Local SGD With a Communication Overhead Depending Only on the Number of
  Workers
Local SGD With a Communication Overhead Depending Only on the Number of Workers
Artin Spiridonoff
Alexander Olshevsky
I. Paschalidis
FedML
25
19
0
03 Jun 2020
Communication-Efficient Distributed Stochastic AUC Maximization with
  Deep Neural Networks
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
33
42
0
05 May 2020
A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
  Balance Communication Overhead, Computational Complexity, and Convergence
  Rate
A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to Balance Communication Overhead, Computational Complexity, and Convergence Rate
Naeimeh Omidvar
M. Maddah-ali
Hamed Mahdavi
ODL
19
3
0
27 Mar 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
41
493
0
23 Mar 2020
Communication optimization strategies for distributed deep neural
  network training: A survey
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
30
12
0
06 Mar 2020
Device Heterogeneity in Federated Learning: A Superquantile Approach
Device Heterogeneity in Federated Learning: A Superquantile Approach
Yassine Laguel
Krishna Pillutla
J. Malick
Zaïd Harchaoui
FedML
40
22
0
25 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Overlap Local-SGD: An Algorithmic Approach to Hide Communication Delays
  in Distributed SGD
Overlap Local-SGD: An Algorithmic Approach to Hide Communication Delays in Distributed SGD
Jianyu Wang
Hao Liang
Gauri Joshi
14
33
0
21 Feb 2020
Dynamic Federated Learning
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
19
25
0
20 Feb 2020
Communication-Efficient Distributed SVD via Local Power Iterations
Communication-Efficient Distributed SVD via Local Power Iterations
Xiang Li
Shusen Wang
Kun Chen
Zhihua Zhang
35
21
0
19 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
36
561
0
19 Feb 2020
Is Local SGD Better than Minibatch SGD?
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
34
253
0
18 Feb 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
19
47
0
06 Feb 2020
FedDANE: A Federated Newton-Type Method
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
18
155
0
07 Jan 2020
Variance Reduced Local SGD with Lower Communication Complexity
Variance Reduced Local SGD with Lower Communication Complexity
Xian-Feng Liang
Shuheng Shen
Jingchang Liu
Zhen Pan
Enhong Chen
Yifei Cheng
FedML
24
152
0
30 Dec 2019
On the Convergence of Local Descent Methods in Federated Learning
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
19
266
0
31 Oct 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive
  Synchronization
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
33
199
0
30 Oct 2019
Federated Learning over Wireless Networks: Convergence Analysis and
  Resource Allocation
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
17
329
0
29 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow
  Momentum
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
12
200
0
01 Oct 2019
Matrix Sketching for Secure Collaborative Machine Learning
Matrix Sketching for Secure Collaborative Machine Learning
Mengjiao Zhang
Shusen Wang
FedML
16
14
0
24 Sep 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
29
426
0
10 Sep 2019
First Analysis of Local GD on Heterogeneous Data
First Analysis of Local GD on Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
FedML
13
172
0
10 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
39
4,417
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
61
2,283
0
04 Jul 2019
Faster Distributed Deep Net Training: Computation and Communication
  Decoupled Stochastic Gradient Descent
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent
Shuheng Shen
Linli Xu
Jingchang Liu
Xianfeng Liang
Yifei Cheng
ODL
FedML
21
24
0
28 Jun 2019
Distributed Optimization for Over-Parameterized Learning
Distributed Optimization for Over-Parameterized Learning
Chi Zhang
Qianxiao Li
16
4
0
14 Jun 2019
Distributed Training with Heterogeneous Data: Bridging Median- and
  Mean-Based Algorithms
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
16
73
0
04 Jun 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
R. L. Jin
Sen Yang
FedML
40
379
0
09 May 2019
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
Fan Zhou
Guojing Cong
11
8
0
12 Mar 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
15
5,017
0
14 Dec 2018
Adaptive Communication Strategies to Achieve the Best Error-Runtime
  Trade-off in Local-Update SGD
Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD
Jianyu Wang
Gauri Joshi
FedML
27
231
0
19 Oct 2018
Cooperative SGD: A unified Framework for the Design and Analysis of
  Communication-Efficient SGD Algorithms
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
30
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
57
429
0
22 Aug 2018
Parallel Restarted SGD with Faster Convergence and Less Communication:
  Demystifying Why Model Averaging Works for Deep Learning
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
29
597
0
17 Jul 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
73
1,043
0
24 May 2018
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in
  Distributed SGD
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD
Sanghamitra Dutta
Gauri Joshi
Soumyadip Ghosh
Parijat Dube
P. Nagpurkar
22
193
0
03 Mar 2018
Avoiding Communication in Proximal Methods for Convex Optimization
  Problems
Avoiding Communication in Proximal Methods for Convex Optimization Problems
Saeed Soori
Aditya Devarakonda
J. Demmel
Mert Gurbuzbalaban
M. Dehnavi
19
7
0
24 Oct 2017
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
Previous
123