ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00955
  4. Cited By
Hamiltonian Monte Carlo with Energy Conserving Subsampling

Hamiltonian Monte Carlo with Energy Conserving Subsampling

2 August 2017
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
ArXivPDFHTML

Papers citing "Hamiltonian Monte Carlo with Energy Conserving Subsampling"

33 / 33 papers shown
Title
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
39
78
0
25 Nov 2018
Subsampling MCMC - An introduction for the survey statistician
Subsampling MCMC - An introduction for the survey statistician
M. Quiroz
M. Villani
Robert Kohn
Minh-Ngoc Tran
Khue-Dung Dang
31
23
0
23 Jul 2018
Large Sample Asymptotics of the Pseudo-Marginal Method
Large Sample Asymptotics of the Pseudo-Marginal Method
Sebastian M. Schmon
George Deligiannidis
Arnaud Doucet
M. Pitt
46
31
0
26 Jun 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
38
49
0
08 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
56
87
0
15 Feb 2018
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
48
14
0
26 Jun 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
49
101
0
16 Jun 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte Carlo
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
52
22
0
08 Jul 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
52
49
0
27 May 2016
The block-Poisson estimator for optimally tuned exact subsampling MCMC
The block-Poisson estimator for optimally tuned exact subsampling MCMC
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
Khue-Dung Dang
76
27
0
27 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
191
4,748
0
04 Jan 2016
The Correlated Pseudo-Marginal Method
The Correlated Pseudo-Marginal Method
George Deligiannidis
Arnaud Doucet
M. Pitt
47
101
0
16 Nov 2015
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale
  Bayesian Sampling
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling
Xiaocheng Shang
Zhanxing Zhu
Benedict Leimkuhler
Amos J. Storkey
48
51
0
29 Oct 2015
Speeding Up MCMC by Delayed Acceptance and Data Subsampling
Speeding Up MCMC by Delayed Acceptance and Data Subsampling
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
71
43
0
22 Jul 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
485
0
15 Jun 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
276
0
11 May 2015
Particle Metropolis-adjusted Langevin algorithms
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
49
24
0
23 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
58
231
0
01 Sep 2014
Speeding Up MCMC by Efficient Data Subsampling
Speeding Up MCMC by Efficient Data Subsampling
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
70
174
0
16 Apr 2014
Firefly Monte Carlo: Exact MCMC with Subsets of Data
Firefly Monte Carlo: Exact MCMC with Subsets of Data
D. Maclaurin
Ryan P. Adams
127
179
0
22 Mar 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
88
906
0
17 Feb 2014
Parallelizing MCMC via Weierstrass Sampler
Parallelizing MCMC via Weierstrass Sampler
Xiangyu Wang
David B. Dunson
66
137
0
17 Dec 2013
Asymptotically Exact, Embarrassingly Parallel MCMC
Asymptotically Exact, Embarrassingly Parallel MCMC
Willie Neiswanger
Chong-Jun Wang
Eric Xing
FedML
72
330
0
19 Nov 2013
On the efficiency of pseudo-marginal random walk Metropolis algorithms
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
55
190
0
27 Sep 2013
On nonnegative unbiased estimators
On nonnegative unbiased estimators
Pierre E. Jacob
Alexandre Hoang Thiery
101
67
0
25 Sep 2013
On Russian Roulette Estimates for Bayesian Inference with
  Doubly-Intractable Likelihoods
On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods
A. Lyne
Mark Girolami
Yves F. Atchadé
Heiko Strathmann
Daniel P. Simpson
86
135
0
17 Jun 2013
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara
Yutian Chen
Max Welling
68
243
0
19 Apr 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
285
3,278
0
09 Jun 2012
Coupled MCMC with a randomized acceptance probability
Coupled MCMC with a randomized acceptance probability
Geoff K. Nicholls
C. Fox
Alexis Muir Watt
77
41
0
30 May 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
147
4,275
0
18 Nov 2011
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
126
890
0
31 Mar 2009
Component-Wise Markov Chain Monte Carlo: Uniform and Geometric
  Ergodicity under Mixing and Composition
Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition
Alicia A. Johnson
Galin L. Jones
R. Neath
119
67
0
04 Mar 2009
1