Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.08945
Cited By
Robust Physical-World Attacks on Deep Learning Models
27 July 2017
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Bo-wen Li
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
D. Song
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Physical-World Attacks on Deep Learning Models"
23 / 123 papers shown
Title
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
33
18
0
29 Jun 2018
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders
Partha Ghosh
Arpan Losalka
Michael J. Black
AAML
21
77
0
31 May 2018
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
37
557
0
30 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
Hu-Fu: Hardware and Software Collaborative Attack Framework against Neural Networks
Wenshuo Li
Jincheng Yu
Xuefei Ning
Pengjun Wang
Qi Wei
Yu Wang
Huazhong Yang
AAML
39
61
0
14 May 2018
Verisimilar Percept Sequences Tests for Autonomous Driving Intelligent Agent Assessment
Thomio Watanabe
D. Wolf
19
8
0
07 May 2018
AGI Safety Literature Review
Tom Everitt
G. Lea
Marcus Hutter
AI4CE
36
115
0
03 May 2018
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
Shang-Tse Chen
Cory Cornelius
Jason Martin
Duen Horng Chau
ObjD
165
424
0
16 Apr 2018
Adversarial Attacks Against Medical Deep Learning Systems
S. G. Finlayson
Hyung Won Chung
I. Kohane
Andrew L. Beam
SILM
AAML
OOD
MedIm
25
230
0
15 Apr 2018
Identifying Cross-Depicted Historical Motifs
Vinaychandran Pondenkandath
Michele Alberti
Nicole Eichenberger
Rolf Ingold
Marcus Liwicki
18
13
0
05 Apr 2018
On the Suitability of
L
p
L_p
L
p
-norms for Creating and Preventing Adversarial Examples
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
AAML
24
138
0
27 Feb 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
45
225
0
19 Feb 2018
Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks
Bo Luo
Yannan Liu
Lingxiao Wei
Q. Xu
AAML
19
142
0
15 Jan 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Bo-wen Li
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
43
730
0
08 Jan 2018
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
Bo-wen Li
Jun-Yan Zhu
Warren He
M. Liu
D. Song
GAN
AAML
37
890
0
08 Jan 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
37
1,090
0
27 Dec 2017
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
31
174
0
26 Dec 2017
Note on Attacking Object Detectors with Adversarial Stickers
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Bo-wen Li
D. Song
Tadayoshi Kohno
Amir Rahmati
A. Prakash
Florian Tramèr
AAML
24
36
0
21 Dec 2017
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
41
130
0
24 Nov 2017
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
How intelligent are convolutional neural networks?
Zhennan Yan
Xiangmin Zhou
22
11
0
18 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
637
0
13 Sep 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
335
5,849
0
08 Jul 2016
Previous
1
2
3