ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.07013
  4. Cited By
Confidence estimation in Deep Neural networks via density modelling

Confidence estimation in Deep Neural networks via density modelling

21 July 2017
Akshayvarun Subramanya
Suraj Srinivas
R. Venkatesh Babu
ArXivPDFHTML

Papers citing "Confidence estimation in Deep Neural networks via density modelling"

10 / 10 papers shown
Title
Advancing Out-of-Distribution Detection through Data Purification and
  Dynamic Activation Function Design
Advancing Out-of-Distribution Detection through Data Purification and Dynamic Activation Function Design
Yingrui Ji
Yao Zhu
Zhigang Li
Jiansheng Chen
Yun-long Kong
Jingbo Chen
OODD
43
0
0
06 Mar 2024
Augmentation by Counterfactual Explanation -- Fixing an Overconfident
  Classifier
Augmentation by Counterfactual Explanation -- Fixing an Overconfident Classifier
Sumedha Singla
Nihal Murali
Forough Arabshahi
Sofia Triantafyllou
Kayhan Batmanghelich
CML
59
5
0
21 Oct 2022
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic
  Space
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
Rui Huang
Yixuan Li
OODD
39
237
0
05 May 2021
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
110
1,306
0
08 Oct 2020
Plausible Counterfactuals: Auditing Deep Learning Classifiers with
  Realistic Adversarial Examples
Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples
Alejandro Barredo Arrieta
Javier Del Ser
AAML
15
22
0
25 Mar 2020
Entropic Out-of-Distribution Detection
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODD
UQCV
25
32
0
15 Aug 2019
Input Prioritization for Testing Neural Networks
Input Prioritization for Testing Neural Networks
Taejoon Byun
Vaibhav Sharma
Abhishek Vijayakumar
Sanjai Rayadurgam
D. Cofer
AAML
29
67
0
11 Jan 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
31
1,457
0
11 Dec 2018
Classification Uncertainty of Deep Neural Networks Based on Gradient
  Information
Classification Uncertainty of Deep Neural Networks Based on Gradient Information
Philipp Oberdiek
Matthias Rottmann
Hanno Gottschalk
UQCV
17
64
0
22 May 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1