Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.03663
Cited By
Underdamped Langevin MCMC: A non-asymptotic analysis
12 July 2017
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Underdamped Langevin MCMC: A non-asymptotic analysis"
50 / 55 papers shown
Title
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
41
0
0
10 Feb 2025
Beyond Log-Concavity and Score Regularity: Improved Convergence Bounds for Score-Based Generative Models in W2-distance
Marta Gentiloni-Silveri
Antonio Ocello
33
2
0
04 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
41
4
0
14 Oct 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
18
0
0
22 Apr 2024
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
32
4
0
26 Dec 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
18
4
0
06 Oct 2023
Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems
Dai Hai Nguyen
Tetsuya Sakurai
14
1
0
31 Jul 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Solving Linear Inverse Problems using Higher-Order Annealed Langevin Diffusion
Nicolas Zilberstein
A. Sabharwal
Santiago Segarra
DiffM
39
7
0
08 May 2023
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
27
8
0
05 Apr 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
B. Leimkuhler
Daniel Paulin
P. Whalley
32
16
0
21 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
25
8
0
19 Jan 2023
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
26
12
0
20 Nov 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
27
24
0
16 Oct 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
30
12
0
13 Oct 2022
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants
Andrew M. Childs
Tongyang Li
Jin-Peng Liu
C. Wang
Ruizhe Zhang
20
16
0
12 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
43
15
0
05 Oct 2022
Gradient Norm Minimization of Nesterov Acceleration:
o
(
1
/
k
3
)
o(1/k^3)
o
(
1/
k
3
)
Shu Chen
Bin Shi
Ya-xiang Yuan
23
15
0
19 Sep 2022
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
32
2
0
15 Aug 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
29
4
0
14 Jun 2022
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
16
126
0
13 Jun 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
15
14
0
26 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
11
38
0
03 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
15
10
0
02 Feb 2022
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
15
5
0
14 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
20
16
0
09 Dec 2021
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
13
1
0
21 Nov 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
29
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
27
16
0
05 Oct 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
22
19
0
02 Aug 2021
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
17
17
0
30 Jul 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
16
109
0
08 Mar 2021
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
11
16
0
10 Jan 2021
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
11
13
0
22 Oct 2020
Random Coordinate Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
8
11
0
03 Oct 2020
Unnormalized Variational Bayes
Saeed Saremi
BDL
81
1
0
29 Jul 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
19
50
0
14 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
18
66
0
03 Jun 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
35
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
11
65
0
11 Feb 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
17
37
0
10 Feb 2020
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
8
37
0
23 May 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
17
10
0
25 Mar 2019
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
21
30
0
10 Jan 2019
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
11
155
0
24 Jul 2018
Markov Chain Importance Sampling -- a highly efficient estimator for MCMC
Ingmar Schuster
I. Klebanov
17
24
0
18 May 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
13
177
0
22 Feb 2018
1
2
Next