ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.03663
  4. Cited By
Underdamped Langevin MCMC: A non-asymptotic analysis

Underdamped Langevin MCMC: A non-asymptotic analysis

12 July 2017
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
ArXivPDFHTML

Papers citing "Underdamped Langevin MCMC: A non-asymptotic analysis"

50 / 55 papers shown
Title
On the query complexity of sampling from non-log-concave distributions
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
41
0
0
10 Feb 2025
Beyond Log-Concavity and Score Regularity: Improved Convergence Bounds for Score-Based Generative Models in W2-distance
Marta Gentiloni-Silveri
Antonio Ocello
33
2
0
04 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
41
4
0
14 Oct 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its
  Variants
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
18
0
0
22 Apr 2024
Mean-field underdamped Langevin dynamics and its spacetime
  discretization
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
32
4
0
26 Dec 2023
Accelerating optimization over the space of probability measures
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
18
4
0
06 Oct 2023
Moreau-Yoshida Variational Transport: A General Framework For Solving
  Regularized Distributional Optimization Problems
Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems
Dai Hai Nguyen
Tetsuya Sakurai
14
1
0
31 Jul 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Solving Linear Inverse Problems using Higher-Order Annealed Langevin
  Diffusion
Solving Linear Inverse Problems using Higher-Order Annealed Langevin Diffusion
Nicolas Zilberstein
A. Sabharwal
Santiago Segarra
DiffM
39
7
0
08 May 2023
Query lower bounds for log-concave sampling
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
27
8
0
05 Apr 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin
  Dynamics
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
B. Leimkuhler
Daniel Paulin
P. Whalley
32
16
0
21 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean
  Proximal Sampler
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
  the Strongly Convex Case
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
25
8
0
19 Jan 2023
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
26
12
0
20 Nov 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
27
24
0
16 Oct 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian
  Monte Carlo with numerical integrators
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
30
12
0
13 Oct 2022
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
  Normalizing Constants
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants
Andrew M. Childs
Tongyang Li
Jin-Peng Liu
C. Wang
Ruizhe Zhang
20
16
0
12 Oct 2022
Fisher information lower bounds for sampling
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
43
15
0
05 Oct 2022
Gradient Norm Minimization of Nesterov Acceleration: $o(1/k^3)$
Gradient Norm Minimization of Nesterov Acceleration: o(1/k3)o(1/k^3)o(1/k3)
Shu Chen
Bin Shi
Ya-xiang Yuan
23
15
0
19 Sep 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
32
2
0
15 Aug 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
29
4
0
14 Jun 2022
Convergence for score-based generative modeling with polynomial
  complexity
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
16
126
0
13 Jun 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
15
14
0
26 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
11
38
0
03 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
15
10
0
02 Feb 2022
A Kernel-Expanded Stochastic Neural Network
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
15
5
0
14 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
20
16
0
09 Dec 2021
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
13
1
0
21 Nov 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
29
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension
  Independent? A Composite Optimization Viewpoint
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
27
16
0
05 Oct 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
22
19
0
02 Aug 2021
Uniform minorization condition and convergence bounds for
  discretizations of kinetic Langevin dynamics
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
17
17
0
30 Jul 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
16
109
0
08 Mar 2021
The shifted ODE method for underdamped Langevin MCMC
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
11
16
0
10 Jan 2021
Random Coordinate Underdamped Langevin Monte Carlo
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
11
13
0
22 Oct 2020
Random Coordinate Langevin Monte Carlo
Random Coordinate Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
8
11
0
03 Oct 2020
Unnormalized Variational Bayes
Unnormalized Variational Bayes
Saeed Saremi
BDL
81
1
0
29 Jul 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
19
50
0
14 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
18
66
0
03 Jun 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
35
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
11
65
0
11 Feb 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
  Hamiltonian Monte Carlo
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
17
37
0
10 Feb 2020
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
8
37
0
23 May 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
17
10
0
25 Mar 2019
Accelerated Flow for Probability Distributions
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
21
30
0
10 Jan 2019
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
11
155
0
24 Jul 2018
Markov Chain Importance Sampling -- a highly efficient estimator for
  MCMC
Markov Chain Importance Sampling -- a highly efficient estimator for MCMC
Ingmar Schuster
I. Klebanov
17
24
0
18 May 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
13
177
0
22 Feb 2018
12
Next