ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.02670
  4. Cited By
Accelerated Stochastic Power Iteration

Accelerated Stochastic Power Iteration

10 July 2017
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
ArXivPDFHTML

Papers citing "Accelerated Stochastic Power Iteration"

7 / 7 papers shown
Title
Scalable and Privacy-Preserving Federated Principal Component Analysis
Scalable and Privacy-Preserving Federated Principal Component Analysis
D. Froelicher
Hyunghoon Cho
Manaswitha Edupalli
João Sá Sousa
Jean-Philippe Bossuat
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Bonnie Berger
Jean-Pierre Hubaux
FedML
24
15
0
31 Mar 2023
Gradient Descent and the Power Method: Exploiting their connection to
  find the leftmost eigen-pair and escape saddle points
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points
R. Tappenden
Martin Takáč
18
0
0
02 Nov 2022
Multiplication-Avoiding Variant of Power Iteration with Applications
Multiplication-Avoiding Variant of Power Iteration with Applications
Hongyi Pan
Diaa Badawi
Runxuan Miao
Erdem Koyuncu
Ahmet Enis Cetin
22
5
0
22 Oct 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
251
0
11 Jun 2021
Distributed Certifiably Correct Pose-Graph Optimization
Distributed Certifiably Correct Pose-Graph Optimization
Yulun Tian
Kasra Khosoussi
David M. Rosen
Jonathan P. How
46
69
0
09 Nov 2019
Scale Invariant Power Iteration
Scale Invariant Power Iteration
Cheolmin Kim
Youngseok Kim
Diego Klabjan
11
3
0
23 May 2019
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
1