Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.02476
Cited By
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
8 July 2017
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks"
25 / 25 papers shown
Title
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
30
7
0
05 Aug 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
35
1
0
02 Aug 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
23
0
0
27 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Unsupervised Restoration of Weather-affected Images using Deep Gaussian Process-based CycleGAN
R. Yasarla
Vishwanath A. Sindagi
Vishal M. Patel
32
2
0
23 Apr 2022
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
A. Ćiprijanović
Diana Kafkes
Gregory F. Snyder
F. Sánchez
G. Perdue
K. Pedro
Brian D. Nord
Sandeep Madireddy
Stefan M. Wild
AAML
34
15
0
28 Dec 2021
Adversarial Attack for Uncertainty Estimation: Identifying Critical Regions in Neural Networks
Ismail Alarab
S. Prakoonwit
AAML
24
14
0
15 Jul 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
A Study on the Uncertainty of Convolutional Layers in Deep Neural Networks
Hao Shen
Sihong Chen
Ran Wang
24
5
0
27 Nov 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
14
55
0
04 Mar 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
190
0
28 Oct 2019
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
AAML
24
9
0
08 Aug 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
50
240
0
06 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
22
122
0
05 Jun 2019
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
12
14
0
29 Nov 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
306
0
11 Oct 2018
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
22
68
0
06 Jun 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
27
52
0
08 Feb 2018
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
86
271
0
24 Feb 2014
1