ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.01543
  4. Cited By
Early stopping for kernel boosting algorithms: A general analysis with
  localized complexities
v1v2 (latest)

Early stopping for kernel boosting algorithms: A general analysis with localized complexities

5 July 2017
Yuting Wei
Fanny Yang
Martin J. Wainwright
ArXiv (abs)PDFHTML

Papers citing "Early stopping for kernel boosting algorithms: A general analysis with localized complexities"

5 / 5 papers shown
Title
Can Implicit Bias Explain Generalization? Stochastic Convex Optimization
  as a Case Study
Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study
Assaf Dauber
M. Feder
Tomer Koren
Roi Livni
60
24
0
13 Mar 2020
Optimal Rates for Spectral Algorithms with Least-Squares Regression over
  Hilbert Spaces
Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces
Junhong Lin
Alessandro Rudi
Lorenzo Rosasco
Volkan Cevher
128
99
0
20 Jan 2018
NYTRO: When Subsampling Meets Early Stopping
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
54
32
0
19 Oct 2015
Randomized sketches for kernels: Fast and optimal non-parametric
  regression
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
82
174
0
25 Jan 2015
Early stopping and non-parametric regression: An optimal data-dependent
  stopping rule
Early stopping and non-parametric regression: An optimal data-dependent stopping rule
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
113
299
0
15 Jun 2013
1