ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.01242
  4. Cited By
Learning Geometric Concepts with Nasty Noise

Learning Geometric Concepts with Nasty Noise

5 July 2017
Ilias Diakonikolas
D. Kane
Alistair Stewart
    AAML
ArXivPDFHTML

Papers citing "Learning Geometric Concepts with Nasty Noise"

20 / 20 papers shown
Title
Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random
Gautam Chandrasekaran
Vasilis Kontonis
Konstantinos Stavropoulos
Kevin Tian
92
0
0
20 Jan 2025
Efficient Testable Learning of General Halfspaces with Adversarial Label
  Noise
Efficient Testable Learning of General Halfspaces with Adversarial Label Noise
Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
Nikos Zarifis
31
0
0
30 Aug 2024
Efficient Discrepancy Testing for Learning with Distribution Shift
Efficient Discrepancy Testing for Learning with Distribution Shift
Gautam Chandrasekaran
Adam R. Klivans
Vasilis Kontonis
Konstantinos Stavropoulos
A. Vasilyan
38
1
0
13 Jun 2024
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Surbhi Goel
Abhishek Shetty
Konstantinos Stavropoulos
A. Vasilyan
OOD
34
2
0
04 Jun 2024
Tester-Learners for Halfspaces: Universal Algorithms
Tester-Learners for Halfspaces: Universal Algorithms
Aravind Gollakota
Adam R. Klivans
Konstantinos Stavropoulos
A. Vasilyan
27
8
0
19 May 2023
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces
  and ReLU Regression under Gaussian Marginals
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
Ilias Diakonikolas
D. Kane
Lisheng Ren
17
26
0
13 Feb 2023
On Optimal Learning Under Targeted Data Poisoning
On Optimal Learning Under Targeted Data Poisoning
Steve Hanneke
Amin Karbasi
Mohammad Mahmoody
Idan Mehalel
Shay Moran
AAML
FedML
25
7
0
06 Oct 2022
Near-Optimal Statistical Query Hardness of Learning Halfspaces with
  Massart Noise
Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise
Ilias Diakonikolas
D. Kane
13
24
0
17 Dec 2020
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
  ReLUs under Gaussian Marginals
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals
Ilias Diakonikolas
D. Kane
Nikos Zarifis
19
66
0
29 Jun 2020
Non-Convex SGD Learns Halfspaces with Adversarial Label Noise
Non-Convex SGD Learns Halfspaces with Adversarial Label Noise
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
26
26
0
11 Jun 2020
Approximation Schemes for ReLU Regression
Approximation Schemes for ReLU Regression
Ilias Diakonikolas
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
Mahdi Soltanolkotabi
16
51
0
26 May 2020
Robustly Learning any Clusterable Mixture of Gaussians
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
34
45
0
13 May 2020
Learning Halfspaces with Massart Noise Under Structured Distributions
Learning Halfspaces with Massart Noise Under Structured Distributions
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
24
59
0
13 Feb 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative
  Filtering
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
23
41
0
19 Nov 2019
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
38
80
0
24 Jun 2019
List-Decodable Linear Regression
List-Decodable Linear Regression
Sushrut Karmalkar
Adam R. Klivans
Pravesh Kothari
24
74
0
14 May 2019
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
24
161
0
31 May 2018
Efficient Algorithms for Outlier-Robust Regression
Efficient Algorithms for Outlier-Robust Regression
Adam R. Klivans
Pravesh Kothari
Raghu Meka
AAML
24
154
0
08 Mar 2018
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
39
138
0
15 Mar 2017
Robust Learning of Fixed-Structure Bayesian Networks
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
43
46
0
23 Jun 2016
1