ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00102
  4. Cited By
Some methods for heterogeneous treatment effect estimation in
  high-dimensions

Some methods for heterogeneous treatment effect estimation in high-dimensions

1 July 2017
Scott Powers
Junyang Qian
Kenneth Jung
Alejandro Schuler
N. Shah
Trevor Hastie
Robert Tibshirani
    CML
ArXivPDFHTML

Papers citing "Some methods for heterogeneous treatment effect estimation in high-dimensions"

25 / 25 papers shown
Title
Overview and practical recommendations on using Shapley Values for identifying predictive biomarkers via CATE modeling
Overview and practical recommendations on using Shapley Values for identifying predictive biomarkers via CATE modeling
David Svensson
Erik Hermansson
N. Nikolaou
Konstantinos Sechidis
Ilya Lipkovich
CML
61
0
0
02 May 2025
Practical Marketplace Optimization at Uber Using Causally-Informed
  Machine Learning
Practical Marketplace Optimization at Uber Using Causally-Informed Machine Learning
Bobby Chen
Siyu Chen
Jason Dowlatabadi
Yu Xuan Hong
Vinayak Iyer
...
Kaichen Wei
Chen Xu
Jingnan Yang
Allen T. Zhang
Guoqing Zhang
OffRL
42
0
0
26 Jul 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average
  Treatment Effects
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
41
1
0
05 Mar 2024
Federated Learning for Estimating Heterogeneous Treatment Effects
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
43
2
0
27 Feb 2024
Learning Prescriptive ReLU Networks
Learning Prescriptive ReLU Networks
Wei-Ju Sun
Asterios Tsiourvas
21
2
0
01 Jun 2023
How to select predictive models for causal inference?
How to select predictive models for causal inference?
M. Doutreligne
Gaël Varoquaux
ELM
CML
29
2
0
01 Feb 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
32
1
0
16 Jan 2023
An Adaptive Kernel Approach to Federated Learning of Heterogeneous
  Causal Effects
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects
Thanh Vinh Vo
Arnab Bhattacharyya
Young Lee
Tze-Yun Leong
FedML
25
19
0
01 Jan 2023
A Double Machine Learning Trend Model for Citizen Science Data
A Double Machine Learning Trend Model for Citizen Science Data
Daniel Fink
A. Johnston
Matthew Strimas‐Mackey
T. Auer
W. Hochachka
...
Lauren Oldham Jaromczyk
O. Robinson
Christopher Wood
S. Kelling
A. Rodewald
26
15
0
27 Oct 2022
What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work?
What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work?
Susanne Dandl
Torsten Hothorn
H. Seibold
Erik Sverdrup
Stefan Wager
A. Zeileis
CML
42
11
0
21 Jun 2022
Efficient Heterogeneous Treatment Effect Estimation With Multiple
  Experiments and Multiple Outcomes
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
29
6
0
10 Jun 2022
Meta-Analysis of Randomized Experiments with Applications to
  Heavy-Tailed Response Data
Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data
Nilesh Tripuraneni
Dhruv Madeka
Dean Phillips Foster
Dominique C. Perrault-Joncas
Michael I. Jordan
26
5
0
14 Dec 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
24
26
0
27 Aug 2021
Federated Estimation of Causal Effects from Observational Data
Federated Estimation of Causal Effects from Observational Data
Thanh Vinh Vo
T. Hoang
Young Lee
Tze-Yun Leong
FedML
CML
28
13
0
31 May 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean
  Embeddings and U-Statistic Regression
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
Estimating Individual Treatment Effects using Non-Parametric Regression
  Models: a Review
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
33
52
0
14 Sep 2020
Response Transformation and Profit Decomposition for Revenue Uplift
  Modeling
Response Transformation and Profit Decomposition for Revenue Uplift Modeling
R. M. Gubela
Stefan Lessmann
S. Jaroszewicz
OffRL
25
51
0
20 Nov 2019
Group Average Treatment Effects for Observational Studies
Group Average Treatment Effects for Observational Studies
D. Jacob
CML
20
20
0
07 Nov 2019
An introduction to flexible methods for policy evaluation
An introduction to flexible methods for policy evaluation
M. Huber
CML
27
7
0
01 Oct 2019
Affordable Uplift: Supervised Randomization in Controlled Experiments
Affordable Uplift: Supervised Randomization in Controlled Experiments
Johannes Haupt
D. Jacob
R. M. Gubela
Stefan Lessmann
27
5
0
01 Oct 2019
Synthetic learner: model-free inference on treatments over time
Synthetic learner: model-free inference on treatments over time
Davide Viviano
Jelena Bradic
CML
22
19
0
02 Apr 2019
A comparison of methods for model selection when estimating individual
  treatment effects
A comparison of methods for model selection when estimating individual treatment effects
Alejandro Schuler
M. Baiocchi
Robert Tibshirani
N. Shah
CML
15
57
0
14 Apr 2018
Synth-Validation: Selecting the Best Causal Inference Method for a Given
  Dataset
Synth-Validation: Selecting the Best Causal Inference Method for a Given Dataset
Alejandro Schuler
Kenneth Jung
Robert Tibshirani
Trevor Hastie
N. Shah
CML
20
27
0
31 Oct 2017
Meta-learners for Estimating Heterogeneous Treatment Effects using
  Machine Learning
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
27
899
0
12 Jun 2017
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
113
2,735
0
18 Aug 2015
1