Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.10207
Cited By
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
30 June 2017
Frank E. Curtis
K. Scheinberg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning"
8 / 8 papers shown
Title
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
13
29
0
18 Jan 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
19
168
0
19 Dec 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric Larsen
Sébastien Lachapelle
Yoshua Bengio
Emma Frejinger
Simon Lacoste-Julien
Andrea Lodi
25
46
0
31 Jul 2018
Proximal Gradient Method with Extrapolation and Line Search for a Class of Nonconvex and Nonsmooth Problems
Lei Yang
35
23
0
18 Nov 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
22
3,172
0
15 Jun 2016
1