ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08936
  4. Cited By
Fast Algorithms for Learning Latent Variables in Graphical Models
v1v2 (latest)

Fast Algorithms for Learning Latent Variables in Graphical Models

27 June 2017
Mohammadreza Soltani
Chinmay Hegde
    CML
ArXiv (abs)PDFHTML

Papers citing "Fast Algorithms for Learning Latent Variables in Graphical Models"

10 / 10 papers shown
Title
Non-square matrix sensing without spurious local minima via the
  Burer-Monteiro approach
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
Constantine Caramanis
Sujay Sanghavi
67
180
0
12 Sep 2016
Dropping Convexity for Faster Semi-definite Optimization
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
82
173
0
14 Sep 2015
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Xiao-Tong Yuan
Ping Li
Tong Zhang
184
113
0
22 Nov 2013
Sparse Inverse Covariance Matrix Estimation Using Quadratic
  Approximation
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
68
343
0
13 Jun 2013
Iterative Thresholding Algorithm for Sparse Inverse Covariance
  Estimation
Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation
D. Guillot
B. Rajaratnam
B. T. Rolfs
A. Maleki
Ian Wong
94
100
0
12 Nov 2012
A Unified Framework for High-Dimensional Analysis of M-Estimators with
  Decomposable Regularizers
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
477
1,379
0
13 Oct 2010
Latent variable graphical model selection via convex optimization
Latent variable graphical model selection via convex optimization
V. Chandrasekaran
P. Parrilo
A. Willsky
CML
209
509
0
06 Aug 2010
Guaranteed Rank Minimization via Singular Value Projection
Guaranteed Rank Minimization via Singular Value Projection
Raghu Meka
Prateek Jain
Inderjit S. Dhillon
191
554
0
30 Sep 2009
High-dimensional covariance estimation by minimizing $\ell_1$-penalized
  log-determinant divergence
High-dimensional covariance estimation by minimizing ℓ1\ell_1ℓ1​-penalized log-determinant divergence
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
251
873
0
21 Nov 2008
A randomized algorithm for principal component analysis
A randomized algorithm for principal component analysis
V. Rokhlin
Arthur Szlam
M. Tygert
87
432
0
12 Sep 2008
1