ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08327
  4. Cited By
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets

Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets

26 June 2017
Florian Maire
Nial Friel
Pierre Alquier
ArXivPDFHTML

Papers citing "Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets"

17 / 17 papers shown
Title
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
42
174
0
16 Apr 2017
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
39
106
0
23 Nov 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
74
29
0
20 May 2016
Optimal approximating Markov chains for Bayesian inference
Optimal approximating Markov chains for Bayesian inference
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
47
31
0
13 Aug 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
276
0
11 May 2015
Stability of Noisy Metropolis-Hastings
Stability of Noisy Metropolis-Hastings
F. Medina-Aguayo
Anthony Lee
Gareth O. Roberts
76
41
0
24 Mar 2015
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
67
108
0
13 Mar 2015
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle
Clara Grazian
Anthony Lee
Christian P. Robert
56
55
0
03 Mar 2015
Speeding Up MCMC by Efficient Data Subsampling
Speeding Up MCMC by Efficient Data Subsampling
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
70
174
0
16 Apr 2014
Firefly Monte Carlo: Exact MCMC with Subsets of Data
Firefly Monte Carlo: Exact MCMC with Subsets of Data
D. Maclaurin
Ryan P. Adams
127
179
0
22 Mar 2014
On nonnegative unbiased estimators
On nonnegative unbiased estimators
Pierre E. Jacob
Alexandre Hoang Thiery
101
67
0
25 Sep 2013
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara
Yutian Chen
Max Welling
68
243
0
19 Apr 2013
Convergence properties of pseudo-marginal Markov chain Monte Carlo
  algorithms
Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
Christophe Andrieu
M. Vihola
63
127
0
04 Oct 2012
Approximate Bayesian Computational methods
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
178
861
0
05 Jan 2011
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
134
890
0
31 Mar 2009
Approximate Bayesian computation (ABC) gives exact results under the
  assumption of model error
Approximate Bayesian computation (ABC) gives exact results under the assumption of model error
Richard D. Wilkinson
91
273
0
20 Nov 2008
1