Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.07269
Cited By
Explanation in Artificial Intelligence: Insights from the Social Sciences
22 June 2017
Tim Miller
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explanation in Artificial Intelligence: Insights from the Social Sciences"
50 / 1,242 papers shown
Title
Interpret-able feedback for AutoML systems
Behnaz Arzani
Kevin Hsieh
Haoxian Chen
21
3
0
22 Feb 2021
Believe The HiPe: Hierarchical Perturbation for Fast, Robust, and Model-Agnostic Saliency Mapping
Jessica Cooper
Ognjen Arandjelovic
David J. Harrison
AAML
14
13
0
22 Feb 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
45
25
0
17 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
68
415
0
15 Feb 2021
The human-AI relationship in decision-making: AI explanation to support people on justifying their decisions
J. Ferreira
Mateus de Souza Monteiro
13
23
0
10 Feb 2021
Principles of Explanation in Human-AI Systems
Shane T. Mueller
Elizabeth S. Veinott
R. Hoffman
Gary Klein
Lamia Alam
T. Mamun
W. Clancey
XAI
11
57
0
09 Feb 2021
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
24
42
0
07 Feb 2021
Bandits for Learning to Explain from Explanations
Freya Behrens
Stefano Teso
Davide Mottin
FAtt
11
1
0
07 Feb 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
120
143
0
05 Feb 2021
"I Don't Think So": Summarizing Policy Disagreements for Agent Comparison
Yotam Amitai
Ofra Amir
LLMAG
27
12
0
05 Feb 2021
AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks
Mckane Andrus
Sarah Dean
T. Gilbert
Nathan Lambert
Tom Zick
22
6
0
04 Feb 2021
EUCA: the End-User-Centered Explainable AI Framework
Weina Jin
Jianyu Fan
D. Gromala
Philippe Pasquier
Ghassan Hamarneh
42
24
0
04 Feb 2021
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Peter Hase
Joey Tianyi Zhou
XAI
30
87
0
03 Feb 2021
Directive Explanations for Actionable Explainability in Machine Learning Applications
Ronal Singh
Paul Dourish
Piers Howe
Tim Miller
L. Sonenberg
Eduardo Velloso
F. Vetere
16
32
0
03 Feb 2021
Evaluating the Interpretability of Generative Models by Interactive Reconstruction
A. Ross
Nina Chen
Elisa Zhao Hang
Elena L. Glassman
Finale Doshi-Velez
105
49
0
02 Feb 2021
Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical Lens
Maia L. Jacobs
Jeffrey He
Melanie F. Pradier
Barbara D. Lam
Andrew C Ahn
T. McCoy
R. Perlis
Finale Doshi-Velez
Krzysztof Z. Gajos
54
145
0
01 Feb 2021
Counterfactual State Explanations for Reinforcement Learning Agents via Generative Deep Learning
Matthew Lyle Olson
Roli Khanna
Lawrence Neal
Fuxin Li
Weng-Keen Wong
CML
40
69
0
29 Jan 2021
Explaining Natural Language Processing Classifiers with Occlusion and Language Modeling
David Harbecke
AAML
27
2
0
28 Jan 2021
Cognitive Perspectives on Context-based Decisions and Explanations
Marcus Westberg
Kary Främling
14
1
0
25 Jan 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
Show or Suppress? Managing Input Uncertainty in Machine Learning Model Explanations
Danding Wang
Wencan Zhang
Brian Y. Lim
FAtt
27
22
0
23 Jan 2021
Explainable Artificial Intelligence Approaches: A Survey
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
Mohiuddin Ahmed
XAI
46
103
0
23 Jan 2021
A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations
Barry Smyth
Mark T. Keane
CML
46
26
0
22 Jan 2021
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
19
116
0
19 Jan 2021
Understanding the Effect of Out-of-distribution Examples and Interactive Explanations on Human-AI Decision Making
Han Liu
Vivian Lai
Chenhao Tan
33
117
0
13 Jan 2021
Expanding Explainability: Towards Social Transparency in AI systems
Upol Ehsan
Q. V. Liao
Michael J. Muller
Mark O. Riedl
Justin D. Weisz
43
394
0
12 Jan 2021
Machine Learning Uncertainty as a Design Material: A Post-Phenomenological Inquiry
J. Benjamin
Arne Berger
Nick Merrill
James Pierce
51
91
0
11 Jan 2021
Argument Schemes and Dialogue for Explainable Planning
Quratul-ain Mahesar
Simon Parsons
23
2
0
07 Jan 2021
How Much Automation Does a Data Scientist Want?
Dakuo Wang
Q. V. Liao
Yunfeng Zhang
Udayan Khurana
Horst Samulowitz
Soya Park
Michael J. Muller
Lisa Amini
AI4CE
42
55
0
07 Jan 2021
Predicting Illness for a Sustainable Dairy Agriculture: Predicting and Explaining the Onset of Mastitis in Dairy Cows
C. Ryan
Christophe Gúeret
D. Berry
Medb Corcoran
Mark T. Keane
Brian Mac Namee
32
6
0
06 Jan 2021
One-shot Policy Elicitation via Semantic Reward Manipulation
Aaquib Tabrez
Ryan Leonard
Bradley Hayes
21
2
0
06 Jan 2021
Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
Md. Naimul Hoque
Klaus Mueller
CML
59
30
0
03 Jan 2021
Modeling Disclosive Transparency in NLP Application Descriptions
Michael Stephen Saxon
Sharon Levy
Xinyi Wang
Alon Albalak
Wenjie Wang
27
7
0
02 Jan 2021
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models
Tongshuang Wu
Marco Tulio Ribeiro
Jeffrey Heer
Daniel S. Weld
60
244
0
01 Jan 2021
Human Evaluation of Spoken vs. Visual Explanations for Open-Domain QA
Ana Valeria González
Gagan Bansal
Angela Fan
Robin Jia
Yashar Mehdad
Srini Iyer
AAML
42
24
0
30 Dec 2020
dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python
Hubert Baniecki
Wojciech Kretowicz
Piotr Piątyszek
J. Wiśniewski
P. Biecek
FaML
34
95
0
28 Dec 2020
Explaining NLP Models via Minimal Contrastive Editing (MiCE)
Alexis Ross
Ana Marasović
Matthew E. Peters
43
121
0
27 Dec 2020
Brain-inspired Search Engine Assistant based on Knowledge Graph
Xuejiao Zhao
Huanhuan Chen
Zhenchang Xing
Chunyan Miao
22
31
0
25 Dec 2020
GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning
Silvan Mertes
Tobias Huber
Katharina Weitz
Alexander Heimerl
Elisabeth André
GAN
AAML
MedIm
39
69
0
22 Dec 2020
Unbox the Blackbox: Predict and Interpret YouTube Viewership Using Deep Learning
Jiaheng Xie
Xinyu Liu
HAI
33
10
0
21 Dec 2020
On Relating 'Why?' and 'Why Not?' Explanations
Alexey Ignatiev
Nina Narodytska
Nicholas M. Asher
Sasha Rubin
XAI
FAtt
LRM
28
26
0
21 Dec 2020
Semantics and explanation: why counterfactual explanations produce adversarial examples in deep neural networks
Kieran Browne
Ben Swift
AAML
GAN
33
29
0
18 Dec 2020
XAI-P-T: A Brief Review of Explainable Artificial Intelligence from Practice to Theory
Nazanin Fouladgar
Kary Främling
XAI
15
4
0
17 Dec 2020
On Exploiting Hitting Sets for Model Reconciliation
Stylianos Loukas Vasileiou
Alessandro Previti
William Yeoh
19
26
0
16 Dec 2020
Explanation from Specification
Harish Naik
Gyorgy Turán
XAI
27
0
0
13 Dec 2020
The Three Ghosts of Medical AI: Can the Black-Box Present Deliver?
Thomas P. Quinn
Stephan Jacobs
M. Senadeera
Vuong Le
S. Coghlan
33
112
0
10 Dec 2020
CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning
Haoteng Tang
Guixiang Ma
Lifang He
Heng-Chiao Huang
Liang Zhan
GNN
40
24
0
10 Dec 2020
Influence-Driven Explanations for Bayesian Network Classifiers
Antonio Rago
Emanuele Albini
P. Baroni
Francesca Toni
20
9
0
10 Dec 2020
Deep Argumentative Explanations
Emanuele Albini
Piyawat Lertvittayakumjorn
Antonio Rago
Francesca Toni
AAML
29
4
0
10 Dec 2020
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
34
18
0
10 Dec 2020
Previous
1
2
3
...
18
19
20
...
23
24
25
Next