Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.07180
Cited By
v1
v2
v3
v4 (latest)
Compressive Statistical Learning with Random Feature Moments
22 June 2017
Rémi Gribonval
Gilles Blanchard
Nicolas Keriven
Y. Traonmilin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Compressive Statistical Learning with Random Feature Moments"
38 / 38 papers shown
Title
Statistical Learning Guarantees for Compressive Clustering and Compressive Mixture Modeling
Rémi Gribonval
Gilles Blanchard
Nicolas Keriven
Y. Traonmilin
22
14
0
17 Apr 2020
Gain with no Pain: Efficient Kernel-PCA by Nyström Sampling
Nicholas Sterge
Bharath K. Sriperumbudur
Lorenzo Rosasco
Alessandro Rudi
103
8
0
11 Jul 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
91
259
0
29 May 2019
Streaming Kernel PCA with
O
~
(
n
)
\tilde{O}(\sqrt{n})
O
~
(
n
)
Random Features
Enayat Ullah
Poorya Mianjy
T. V. Marinov
R. Arora
106
22
0
02 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
273
3,219
0
20 Jun 2018
Entropy and mutual information in models of deep neural networks
Marylou Gabrié
Andre Manoel
Clément Luneau
Jean Barbier
N. Macris
Florent Krzakala
Lenka Zdeborová
71
180
0
24 May 2018
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
174
1,500
0
04 Jan 2018
Approximate Kernel PCA Using Random Features: Computational vs. Statistical Trade-off
Bharath K. Sriperumbudur
Nicholas Sterge
51
22
0
20 Jun 2017
Towards Understanding the Invertibility of Convolutional Neural Networks
A. Gilbert
Yi Zhang
Kibok Lee
Y. Zhang
Honglak Lee
65
64
0
24 May 2017
Training Gaussian Mixture Models at Scale via Coresets
Mario Lucic
Matthew Faulkner
Andreas Krause
Dan Feldman
70
101
0
23 Mar 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
107
1,416
0
02 Mar 2017
Compressive K-means
Nicolas Keriven
Nicolas M Tremblay
Y. Traonmilin
Rémi Gribonval
74
53
0
27 Oct 2016
Structured adaptive and random spinners for fast machine learning computations
Mariusz Bojarski
A. Choromańska
K. Choromanski
Francois Fagan
Cédric Gouy-Pailler
Anne Morvan
Nourhan Sakr
Tamás Sarlós
Jamal Atif
69
35
0
19 Oct 2016
Non-asymptotic upper bounds for the reconstruction error of PCA
M. Reiß
Martin Wahl
71
56
0
13 Sep 2016
Sketching for Large-Scale Learning of Mixture Models
Nicolas Keriven
Anthony Bourrier
Rémi Gribonval
Patrick Pérez
65
75
0
09 Jun 2016
TripleSpin - a generic compact paradigm for fast machine learning computations
K. Choromanski
Francois Fagan
Cédric Gouy-Pailler
Anne Morvan
Vikas Sindhwani
Jamal Atif
83
7
0
29 May 2016
Streaming Kernel Principal Component Analysis
Mina Ghashami
Daniel J. Perry
J. M. Phillips
43
38
0
16 Dec 2015
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
45
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
88
130
0
06 Jun 2015
Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?
Raja Giryes
Guillermo Sapiro
A. Bronstein
109
187
0
30 Apr 2015
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
116
847
0
10 Feb 2015
Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions
Yohann De Castro
Fabrice Gamboa
Didier Henrion
J. Lasserre
49
75
0
09 Feb 2015
The Fast Convergence of Incremental PCA
Akshay Balsubramani
S. Dasgupta
Y. Freund
79
143
0
15 Jan 2015
Fastfood: Approximate Kernel Expansions in Loglinear Time
Quoc V. Le
Tamás Sarlós
Alex Smola
95
444
0
13 Aug 2014
Dimensionality reduction with subgaussian matrices: a unified theory
S. Dirksen
87
82
0
17 Feb 2014
Signal Recovery from Pooling Representations
Joan Bruna
Arthur Szlam
Yann LeCun
91
96
0
16 Nov 2013
The More, the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures
Joseph Anderson
M. Belkin
Navin Goyal
Luis Rademacher
James R. Voss
136
93
0
12 Nov 2013
A Two-round Variant of EM for Gaussian Mixtures
S. Dasgupta
Leonard J. Schulman
157
167
0
16 Jan 2013
Privacy Aware Learning
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
175
290
0
07 Oct 2012
Learning mixtures of spherical Gaussians: moment methods and spectral decompositions
Daniel J. Hsu
Sham Kakade
227
326
0
25 Jun 2012
Fast rates for empirical vector quantization
Clément Levrard
MQ
68
40
0
29 Jan 2012
A Unified Framework for Approximating and Clustering Data
Dan Feldman
M. Langberg
161
458
0
07 Jun 2011
Polynomial Learning of Distribution Families
M. Belkin
Kaushik Sinha
399
226
0
27 Apr 2010
Online Learning for Matrix Factorization and Sparse Coding
Julien Mairal
Francis R. Bach
Jean Ponce
Guillermo Sapiro
157
2,616
0
01 Aug 2009
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
217
747
0
30 Jul 2009
Adaptive Dantzig density estimation
Karine Bertin
E. L. Pennec
Vincent Rivoirard
174
45
0
06 May 2009
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
233
2,365
0
15 May 2008
Online EM Algorithm for Latent Data Models
Olivier Cappé
Eric Moulines
147
482
0
27 Dec 2007
1