Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.06491
Cited By
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
20 June 2017
Sanket Kamthe
M. Deisenroth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control"
33 / 33 papers shown
Title
DMWM: Dual-Mind World Model with Long-Term Imagination
Lingyi Wang
Rashed Shelim
Walid Saad
Naren Ramakrishnan
LRM
175
1
0
11 Feb 2025
Increasing Information for Model Predictive Control with Semi-Markov Decision Processes
Rémy Hosseinkhan Boucher
Onofrio Semeraro
L. Mathelin
48
0
0
28 Jan 2025
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
42
0
0
07 Oct 2024
Practical Probabilistic Model-based Deep Reinforcement Learning by Integrating Dropout Uncertainty and Trajectory Sampling
Wenjun Huang
Yunduan Cui
Huiyun Li
Xin Wu
MU
22
0
0
20 Sep 2023
Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function
Ruijie Zheng
Xiyao Wang
Huazhe Xu
Furong Huang
48
13
0
02 Feb 2023
A Data-driven Pricing Scheme for Optimal Routing through Artificial Currencies
David van de Sanden
Maarten Schoukens
Mauro Salazar
12
2
0
27 Nov 2022
Exploration via Planning for Information about the Optimal Trajectory
Viraj Mehta
I. Char
J. Abbate
R. Conlin
M. Boyer
Stefano Ermon
J. Schneider
W. Neiswanger
OffRL
27
6
0
06 Oct 2022
FORESEE: Prediction with Expansion-Compression Unscented Transform for Online Policy Optimization
Hardik Parwana
Dimitra Panagou
25
2
0
26 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
13
0
0
04 Sep 2022
Bridging Model-based Safety and Model-free Reinforcement Learning through System Identification of Low Dimensional Linear Models
Zhongyu Li
Jun Zeng
A. Thirugnanam
K. Sreenath
26
16
0
11 May 2022
Gradient-Based Trajectory Optimization With Learned Dynamics
Bhavya Sukhija
Nathanael Kohler
Miguel Zamora
Simon Zimmermann
Sebastian Curi
Andreas Krause
Stelian Coros
30
9
0
09 Apr 2022
Saute RL: Almost Surely Safe Reinforcement Learning Using State Augmentation
Aivar Sootla
Alexander I. Cowen-Rivers
Taher Jafferjee
Ziyan Wang
D. Mguni
Jun Wang
Haitham Bou-Ammar
32
54
0
14 Feb 2022
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
22
0
0
15 Oct 2021
Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts
Weinan Zhang
Xihuai Wang
Jian Shen
Ming Zhou
27
35
0
07 May 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
21
2
0
26 Mar 2021
Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning
Sebastian Curi
Ilija Bogunovic
Andreas Krause
39
17
0
18 Mar 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling
Ying Fan
Yifei Ming
25
17
0
20 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
An Iterative LQR Controller for Off-Road and On-Road Vehicles using a Neural Network Dynamics Model
Akhil Nagariya
Srikanth Saripalli
19
28
0
28 Jul 2020
Anticipating the Long-Term Effect of Online Learning in Control
A. Capone
Sandra Hirche
19
4
0
24 Jul 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
30
82
0
15 Jun 2020
SAMBA: Safe Model-Based & Active Reinforcement Learning
Alexander I. Cowen-Rivers
Daniel Palenicek
Vincent Moens
Mohammed Abdullah
Aivar Sootla
Jun Wang
Haitham Bou-Ammar
21
44
0
12 Jun 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
28
316
0
25 Feb 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
M. Zeilinger
17
35
0
23 Dec 2019
Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
Sumeet Singh
Spencer M. Richards
Vikas Sindhwani
Jean-Jacques E. Slotine
Marco Pavone
29
74
0
29 Jul 2019
Learning to Guide: Guidance Law Based on Deep Meta-learning and Model Predictive Path Integral Control
Chen Liang
Weihong Wang
Zhenghua Liu
Chao Lai
Benchun Zhou
16
28
0
15 Apr 2019
RLOC: Neurobiologically Inspired Hierarchical Reinforcement Learning Algorithm for Continuous Control of Nonlinear Dynamical Systems
E. Abramova
Luke Dickens
Daniel Kuhn
A. Faisal
16
3
0
07 Mar 2019
VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for Model-based Control
Xingxing Liang
Qi Wang
Yanghe Feng
Zhong Liu
Jincai Huang
21
5
0
24 Dec 2018
A predictive safety filter for learning-based control of constrained nonlinear dynamical systems
K. P. Wabersich
M. Zeilinger
AI4CE
20
154
0
13 Dec 2018
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
19
224
0
14 Sep 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
8
142
0
20 Mar 2018
1