ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.06296
  4. Cited By
Approximate Kernel PCA Using Random Features: Computational vs.
  Statistical Trade-off
v1v2v3v4 (latest)

Approximate Kernel PCA Using Random Features: Computational vs. Statistical Trade-off

20 June 2017
Bharath K. Sriperumbudur
Nicholas Sterge
ArXiv (abs)PDFHTML

Papers citing "Approximate Kernel PCA Using Random Features: Computational vs. Statistical Trade-off"

11 / 11 papers shown
Title
Spectral Regularized Kernel Goodness-of-Fit Tests
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
120
4
0
08 Aug 2023
Generalization Properties of Learning with Random Features
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
68
331
0
14 Feb 2016
Less is More: Nyström Computational Regularization
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
43
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
75
130
0
06 Jun 2015
Randomized sketches for kernels: Fast and optimal non-parametric
  regression
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
82
174
0
25 Jan 2015
On the Sample Complexity of Subspace Learning
On the Sample Complexity of Subspace Learning
Alessandro Rudi
Guillermo D. Cañas
Lorenzo Rosasco
55
28
0
21 Aug 2014
Randomized Nonlinear Component Analysis
Randomized Nonlinear Component Analysis
David Lopez-Paz
S. Sra
Alex Smola
Zoubin Ghahramani
Bernhard Schölkopf
134
176
0
01 Feb 2014
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
161
282
0
09 Aug 2012
Learning Sets with Separating Kernels
Learning Sets with Separating Kernels
Ernesto De Vito
Lorenzo Rosasco
A. Toigo
85
52
0
16 Apr 2012
Random Feature Maps for Dot Product Kernels
Random Feature Maps for Dot Product Kernels
Purushottam Kar
H. Karnick
82
256
0
31 Jan 2012
Improved Bound for the Nystrom's Method and its Application to Kernel
  Classification
Improved Bound for the Nystrom's Method and its Application to Kernel Classification
Rong Jin
Tianbao Yang
M. Mahdavi
Yu-Feng Li
Zhi Zhou
95
61
0
09 Nov 2011
1