Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.06083
Cited By
Towards Deep Learning Models Resistant to Adversarial Attacks
19 June 2017
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Deep Learning Models Resistant to Adversarial Attacks"
50 / 6,519 papers shown
Title
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
37
14
0
23 Mar 2019
Improving Adversarial Robustness via Guided Complement Entropy
Hao-Yun Chen
Jhao-Hong Liang
Shih-Chieh Chang
Jia Pan
Yu-Ting Chen
Wei Wei
Da-Cheng Juan
AAML
14
47
0
23 Mar 2019
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
Yao Qin
Nicholas Carlini
Ian Goodfellow
G. Cottrell
Colin Raffel
AAML
38
377
0
22 Mar 2019
Adversarial camera stickers: A physical camera-based attack on deep learning systems
Juncheng Billy Li
Frank R. Schmidt
J. Zico Kolter
AAML
16
164
0
21 Mar 2019
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
22
17
0
21 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
29
57
0
20 Mar 2019
Implicit Generation and Generalization in Energy-Based Models
Yilun Du
Igor Mordatch
BDL
DiffM
19
40
0
20 Mar 2019
On the Robustness of Deep K-Nearest Neighbors
Chawin Sitawarin
David Wagner
AAML
OOD
11
58
0
20 Mar 2019
On Certifying Non-uniform Bound against Adversarial Attacks
Chen Liu
Ryota Tomioka
V. Cevher
AAML
50
19
0
15 Mar 2019
A Research Agenda: Dynamic Models to Defend Against Correlated Attacks
Ian Goodfellow
AAML
OOD
43
31
0
14 Mar 2019
Attribution-driven Causal Analysis for Detection of Adversarial Examples
Susmit Jha
Sunny Raj
S. Fernandes
Sumit Kumar Jha
S. Jha
Gunjan Verma
B. Jalaeian
A. Swami
AAML
25
17
0
14 Mar 2019
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
36
2
0
10 Mar 2019
GanDef: A GAN based Adversarial Training Defense for Neural Network Classifier
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
GAN
AAML
33
19
0
06 Mar 2019
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
26
45
0
06 Mar 2019
Negative Training for Neural Dialogue Response Generation
Tianxing He
James R. Glass
30
59
0
06 Mar 2019
Statistical Guarantees for the Robustness of Bayesian Neural Networks
L. Cardelli
Marta Kwiatkowska
Luca Laurenti
Nicola Paoletti
A. Patané
Matthew Wicker
AAML
31
54
0
05 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
Laurens van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
33
64
0
05 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
Uiwon Hwang
Jaewoo Park
Hyemi Jang
Sungroh Yoon
N. Cho
AAML
20
76
0
02 Mar 2019
On the Effectiveness of Low Frequency Perturbations
Yash Sharma
G. Ding
Marcus A. Brubaker
AAML
38
121
0
28 Feb 2019
Enhancing the Robustness of Deep Neural Networks by Boundary Conditional GAN
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
27
20
0
28 Feb 2019
Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
30
18
0
28 Feb 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Adversarial Attacks on Time Series
Fazle Karim
Somshubra Majumdar
H. Darabi
AI4TS
23
97
0
27 Feb 2019
The Best Defense Is a Good Offense: Adversarial Attacks to Avoid Modulation Detection
Muhammad Zaid Hameed
András Gyorgy
Deniz Gunduz
AAML
21
72
0
27 Feb 2019
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
31
116
0
27 Feb 2019
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
19
43
0
25 Feb 2019
Adversarial attacks hidden in plain sight
Jan Philip Göpfert
André Artelt
H. Wersing
Barbara Hammer
AAML
25
17
0
25 Feb 2019
Adversarial Reinforcement Learning under Partial Observability in Autonomous Computer Network Defence
Yi Han
David Hubczenko
Paul Montague
O. Vel
Tamas Abraham
Benjamin I. P. Rubinstein
C. Leckie
T. Alpcan
S. Erfani
AAML
16
6
0
25 Feb 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
52
263
0
23 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
26
59
0
22 Feb 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
48
338
0
21 Feb 2019
Quantifying Perceptual Distortion of Adversarial Examples
Matt Jordan
N. Manoj
Surbhi Goel
A. Dimakis
19
39
0
21 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
36
210
0
21 Feb 2019
Perceptual Quality-preserving Black-Box Attack against Deep Learning Image Classifiers
Diego Gragnaniello
Francesco Marra
Giovanni Poggi
L. Verdoliva
AAML
19
30
0
20 Feb 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
24
182
0
20 Feb 2019
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
Fuli Feng
Xiangnan He
Jie Tang
Tat-Seng Chua
OOD
AAML
34
219
0
20 Feb 2019
There are No Bit Parts for Sign Bits in Black-Box Attacks
Abdullah Al-Dujaili
Una-May O’Reilly
AAML
21
20
0
19 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
37
892
0
18 Feb 2019
Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces
Mohammad Saidur Rahman
Mohsen Imani
Nate Mathews
M. Wright
AAML
14
80
0
18 Feb 2019
AuxBlocks: Defense Adversarial Example via Auxiliary Blocks
Yueyao Yu
Pengfei Yu
Wenye Li
AAML
14
6
0
18 Feb 2019
Mitigation of Adversarial Examples in RF Deep Classifiers Utilizing AutoEncoder Pre-training
S. Kokalj-Filipovic
Rob Miller
Nicholas Chang
Chi Leung Lau
AAML
22
36
0
16 Feb 2019
Adversarial Examples in RF Deep Learning: Detection of the Attack and its Physical Robustness
S. Kokalj-Filipovic
Rob Miller
AAML
25
31
0
16 Feb 2019
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
40
1,665
0
13 Feb 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
27
175
0
13 Feb 2019
Examining Adversarial Learning against Graph-based IoT Malware Detection Systems
Ahmed A. Abusnaina
Aminollah Khormali
Hisham Alasmary
Jeman Park
Afsah Anwar
Ulku Meteriz
Aziz Mohaisen
AAML
18
5
0
12 Feb 2019
Towards a Robust Deep Neural Network in Texts: A Survey
Wenqi Wang
Benxiao Tang
Run Wang
Lina Wang
Aoshuang Ye
AAML
26
39
0
12 Feb 2019
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser
Steve Hanneke
Nathan Srebro
12
138
0
12 Feb 2019
Model Compression with Adversarial Robustness: A Unified Optimization Framework
Shupeng Gui
Haotao Wang
Chen Yu
Haichuan Yang
Zhangyang Wang
Ji Liu
MQ
19
137
0
10 Feb 2019
Previous
1
2
3
...
123
124
125
...
129
130
131
Next