ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.05966
  4. Cited By
Deep Counterfactual Networks with Propensity-Dropout

Deep Counterfactual Networks with Propensity-Dropout

19 June 2017
Ahmed Alaa
M. Weisz
M. Schaar
    CML
    OOD
    BDL
ArXivPDFHTML

Papers citing "Deep Counterfactual Networks with Propensity-Dropout"

21 / 21 papers shown
Title
Consistent Causal Inference of Group Effects in Non-Targeted Trials with Finitely Many Effect Levels
Consistent Causal Inference of Group Effects in Non-Targeted Trials with Finitely Many Effect Levels
Georgios Mavroudeas
M. Magdon-Ismail
Kristin P. Bennett
Jason Kuruzovich
34
0
0
22 Apr 2025
Enhancing predictive imaging biomarker discovery through treatment
  effect analysis
Enhancing predictive imaging biomarker discovery through treatment effect analysis
Shuhan Xiao
Lukas Klein
Jens Petersen
Philipp Vollmuth
Paul F. Jaeger
Klaus H. Maier-Hein
34
0
0
04 Jun 2024
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual
  Inference
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference
Yonghe Zhao
Q. Huang
Siwei Wu
Yun Peng
H. Sun
BDL
CML
21
0
0
02 Aug 2023
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Yong Li
CML
46
5
0
23 Dec 2022
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
  Treatment Perspective
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple Treatment Perspective
Pengfei Xi
Guifeng Wang
Zhipeng Hu
Yu Xiong
Ming‐Fu Gong
...
Runze Wu
Yu-qiong Ding
Tangjie Lv
Changjie Fan
Xiangnan Feng
CML
AI4TS
AI4CE
20
0
0
17 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
41
11
0
07 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
  Estimation
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
40
20
0
08 Oct 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
29
2
0
06 Jun 2022
Toward Data-Driven Digital Therapeutics Analytics: Literature Review and
  Research Directions
Toward Data-Driven Digital Therapeutics Analytics: Literature Review and Research Directions
Uichin Lee
Gyuwon Jung
Eun-Yeol Ma
Jinsan Kim
Heepyung Kim
Jumabek Alikhanov
Youngtae Noh
Heeyoung Kim
21
20
0
04 May 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
33
30
0
02 Feb 2022
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
28
16
0
04 Sep 2021
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
  $L_1$ regularized Neural Networks Predictions
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted L1L_1L1​ regularized Neural Networks Predictions
M. Rostami
O. Saarela
M. Escobar
45
1
0
02 Aug 2021
Time Series Forecasting With Deep Learning: A Survey
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
59
1,192
0
28 Apr 2020
G-Net: A Deep Learning Approach to G-computation for Counterfactual
  Outcome Prediction Under Dynamic Treatment Regimes
G-Net: A Deep Learning Approach to G-computation for Counterfactual Outcome Prediction Under Dynamic Treatment Regimes
Rui Li
Zach Shahn
Jun Li
Mingyu Lu
Prithwish Chakraborty
Daby M. Sow
Mohamed F. Ghalwash
Li-wei H. Lehman
CML
AI4CE
PINN
BDL
19
12
0
23 Mar 2020
Estimating the Effects of Continuous-valued Interventions using
  Generative Adversarial Networks
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
32
105
0
27 Feb 2020
Learning Counterfactual Representations for Estimating Individual
  Dose-Response Curves
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
34
132
0
03 Feb 2019
Deconfounding Reinforcement Learning in Observational Settings
Deconfounding Reinforcement Learning in Observational Settings
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
CML
OOD
39
73
0
26 Dec 2018
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
21
111
0
01 Oct 2018
A Bayesian Nonparametric Approach for Estimating Individualized
  Treatment-Response Curves
A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves
Yanbo Xu
Yanxun Xu
Suchi Saria
CML
64
40
0
18 Aug 2016
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
722
0
12 May 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1