Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.04702
Cited By
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
15 June 2017
Weinan E
Jiequn Han
Arnulf Jentzen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations"
50 / 248 papers shown
Title
Reverse-BSDE Monte Carlo
Jairon H. N. Batista
Flávio B. Gonçalves
Yuri F. Saporito
Rodrigo S. Targino
DiffM
31
0
0
11 May 2025
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
60
0
0
02 May 2025
FlowKac: An Efficient Neural Fokker-Planck solver using Temporal Normalizing flows and the Feynman Kac-Formula
Naoufal El Bekri
Lucas Drumetz
Franck Vermet
55
0
0
14 Mar 2025
FBSJNN: A Theoretically Interpretable and Efficiently Deep Learning method for Solving Partial Integro-Differential Equations
Zaijun Ye
Wansheng Wang
75
0
0
15 Dec 2024
A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations
Shu Liu
Stanley Osher
Wuchen Li
33
0
0
09 Nov 2024
Convergence Guarantees for Neural Network-Based Hamilton-Jacobi Reachability
William Hofgard
29
2
0
03 Oct 2024
Solving High-Dimensional Partial Integral Differential Equations: The Finite Expression Method
Gareth Hardwick
Senwei Liang
Haizhao Yang
39
1
0
01 Oct 2024
A Taxonomy of Loss Functions for Stochastic Optimal Control
Carles Domingo-Enrich
37
3
0
01 Oct 2024
Multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation overcome the curse of dimensionality when approximating semilinear parabolic partial differential equations in
L
p
L^p
L
p
-sense
Ariel Neufeld
Tuan Anh Nguyen
42
0
0
30 Sep 2024
Frequency-adaptive Multi-scale Deep Neural Networks
Jizu Huang
Rukang You
Tao Zhou
AI4CE
33
1
0
28 Sep 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
28
0
0
21 Aug 2024
Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations
M. L. Shahab
Hadi Susanto
27
2
0
29 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
42
8
0
10 Jul 2024
Optimal Control of Agent-Based Dynamics under Deep Galerkin Feedback Laws
Frederik Kelbel
13
0
0
13 Jun 2024
Solving Poisson Equations using Neural Walk-on-Spheres
Hong Chul Nam
Julius Berner
Anima Anandkumar
37
3
0
05 Jun 2024
Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
Simone Brugiapaglia
N. Dexter
Samir Karam
Weiqi Wang
AI4CE
DiffM
43
1
0
03 Jun 2024
Convergence of the Deep Galerkin Method for Mean Field Control Problems
William Hofgard
Jingruo Sun
Asaf Cohen
AI4CE
37
3
0
22 May 2024
FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model
Zezheng Song
Jiaxin Yuan
Haizhao Yang
AI4CE
40
18
0
23 Apr 2024
TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision
Zhuo Chen
Jacob McCarran
Esteban Vizcaino
Marin Soljacic
Di Luo
AI4CE
21
3
0
16 Apr 2024
A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
Lorenc Kapllani
Long Teng
31
2
0
12 Apr 2024
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
26
2
0
08 Apr 2024
Deep Backward and Galerkin Methods for the Finite State Master Equation
Asaf Cohen
Mathieu Lauriere
Ethan C. Zell
44
2
0
08 Mar 2024
Neural optimal controller for stochastic systems via pathwise HJB operator
Zhe Jiao
Xiao-zheng Luo
Xinlei Yi
30
0
0
23 Feb 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
13
0
22 Feb 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
Yahong Yang
Juncai He
AI4CE
40
7
0
31 Jan 2024
An Explicit Scheme for Pathwise XVA Computations
L. Abbas-Turki
Stéphane Crépey
Botao Li
Bouazza Saadeddine
11
2
0
24 Jan 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
PDE Generalization of In-Context Operator Networks: A Study on 1D Scalar Nonlinear Conservation Laws
Liu Yang
Stanley J. Osher
AI4CE
48
19
0
14 Jan 2024
Hutchinson Trace Estimation for High-Dimensional and High-Order Physics-Informed Neural Networks
Zheyuan Hu
Zekun Shi
George Karniadakis
Kenji Kawaguchi
AI4CE
PINN
52
24
0
22 Dec 2023
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
20
6
0
04 Dec 2023
Bias-Variance Trade-off in Physics-Informed Neural Networks with Randomized Smoothing for High-Dimensional PDEs
Zheyuan Hu
Zhouhao Yang
Yezhen Wang
George Karniadakis
Kenji Kawaguchi
56
10
0
26 Nov 2023
A Deep-Genetic Algorithm (Deep-GA) Approach for High-Dimensional Nonlinear Parabolic Partial Differential Equations
E. Putri
M. L. Shahab
Mohammad Iqbal
I. Mukhlash
A. Hakam
Lutfi Mardianto
Hadi Susanto
37
1
0
20 Nov 2023
Error Analysis of Option Pricing via Deep PDE Solvers: Empirical Study
Rawin Assabumrungrat
Kentaro Minami
Masanori Hirano
15
1
0
13 Nov 2023
Optimal Deep Neural Network Approximation for Korobov Functions with respect to Sobolev Norms
Yahong Yang
Yulong Lu
40
3
0
08 Nov 2023
Time integration schemes based on neural networks for solving partial differential equations on coarse grids
Xinxin Yan
Zhideng Zhou
Xiaohan Cheng
Xiaolei Yang
AI4TS
AI4CE
23
0
0
16 Oct 2023
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Lorenc Kapllani
Long Teng
Matthias Rottmann
24
1
0
05 Oct 2023
An Extreme Learning Machine-Based Method for Computational PDEs in Higher Dimensions
Yiran Wang
Suchuan Dong
31
35
0
13 Sep 2023
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
38
7
0
31 Aug 2023
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
34
3
0
30 Aug 2023
Fine-Tune Language Models as Multi-Modal Differential Equation Solvers
Liu Yang
Siting Liu
Stanley J. Osher
27
0
0
09 Aug 2023
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
25
1
0
07 Aug 2023
From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs
Lorenz Richter
Leon Sallandt
Nikolas Nusken
21
4
0
28 Jul 2023
Tackling the Curse of Dimensionality with Physics-Informed Neural Networks
Zheyuan Hu
K. Shukla
George Karniadakis
Kenji Kawaguchi
PINN
AI4CE
65
87
0
23 Jul 2023
PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
R. Gao
Yufeng Wang
Min Yang
Chuanjun Chen
GAN
34
2
0
21 Jul 2023
Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms
R. Balkin
Héctor D. Ceniceros
Ruimeng Hu
21
2
0
12 Jul 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
23
6
0
06 Jul 2023
Transgressing the boundaries: towards a rigorous understanding of deep learning and its (non-)robustness
C. Hartmann
Lorenz Richter
AAML
27
2
0
05 Jul 2023
Coupling parameter and particle dynamics for adaptive sampling in Neural Galerkin schemes
Yuxiao Wen
Eric Vanden-Eijnden
Benjamin Peherstorfer
24
13
0
27 Jun 2023
Transferability of Winning Lottery Tickets in Neural Network Differential Equation Solvers
Edward Prideaux-Ghee
40
0
0
16 Jun 2023
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
24
6
0
01 Jun 2023
1
2
3
4
5
Next