ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04161
  4. Cited By
Lost Relatives of the Gumbel Trick

Lost Relatives of the Gumbel Trick

13 June 2017
Matej Balog
Nilesh Tripuraneni
Zoubin Ghahramani
Adrian Weller
ArXivPDFHTML

Papers citing "Lost Relatives of the Gumbel Trick"

17 / 17 papers shown
Title
Conditioned quantum-assisted deep generative surrogate for
  particle-calorimeter interactions
Conditioned quantum-assisted deep generative surrogate for particle-calorimeter interactions
J. Q. Toledo-Marín
Sebastian Gonzalez
Hao Jia
Ian Lu
Deniz Sogutlu
...
Eric Paquet
R. Melko
Geoffrey C. Fox
M. Swiatlowski
W. Fedorko
AI4CE
25
1
0
30 Oct 2024
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
Sangwoo Shin
H. Hino
34
0
0
02 Aug 2024
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI
  Integration With Provable Guarantees
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI Integration With Provable Guarantees
Jinzhao Li
Nan Jiang
Yexiang Xue
17
1
0
16 Sep 2023
How Bad is Top-$K$ Recommendation under Competing Content Creators?
How Bad is Top-KKK Recommendation under Competing Content Creators?
Fan Yao
Chuanhao Li
Denis Nekipelov
Hongning Wang
Haifeng Xu
13
24
0
03 Feb 2023
Differentially Private Top-k Selection via Canonical Lipschitz Mechanism
Differentially Private Top-k Selection via Canonical Lipschitz Mechanism
Michael Shekelyan
Grigorios Loukides
28
4
0
31 Jan 2022
Learning Structured Latent Factors from Dependent Data:A Generative
  Model Framework from Information-Theoretic Perspective
Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective
Ruixiang Zhang
Masanori Koyama
Katsuhiko Ishiguro
CML
14
6
0
21 Jul 2020
Federating Recommendations Using Differentially Private Prototypes
Federating Recommendations Using Differentially Private Prototypes
Mónica Ribero
Jette Henderson
Sinead Williamson
H. Vikalo
FedML
19
39
0
01 Mar 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
29
106
0
20 Feb 2020
Black-Box Optimization with Local Generative Surrogates
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
8
3
0
11 Feb 2020
Adversarial Filters of Dataset Biases
Adversarial Filters of Dataset Biases
Ronan Le Bras
Swabha Swayamdipta
Chandra Bhagavatula
Rowan Zellers
Matthew E. Peters
Ashish Sabharwal
Yejin Choi
36
220
0
10 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Stochastic Optimization of Sorting Networks via Continuous Relaxations
Stochastic Optimization of Sorting Networks via Continuous Relaxations
Aditya Grover
Eric Wang
Aaron Zweig
Stefano Ermon
11
168
0
21 Mar 2019
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for
  Sampling Sequences Without Replacement
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement
W. Kool
H. V. Hoof
Max Welling
71
216
0
14 Mar 2019
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
57
264
0
23 Feb 2018
Approximate Inference via Weighted Rademacher Complexity
Approximate Inference via Weighted Rademacher Complexity
Jonathan Kuck
Ashish Sabharwal
Stefano Ermon
16
7
0
27 Jan 2018
Reparameterizing the Birkhoff Polytope for Variational Permutation
  Inference
Reparameterizing the Birkhoff Polytope for Variational Permutation Inference
Scott W. Linderman
Gonzalo E. Mena
H. Cooper
Liam Paninski
John P. Cunningham
29
50
0
26 Oct 2017
High Dimensional Inference with Random Maximum A-Posteriori
  Perturbations
High Dimensional Inference with Random Maximum A-Posteriori Perturbations
Tamir Hazan
Francesco Orabona
Anand D. Sarwate
Subhransu Maji
Tommi Jaakkola
19
7
0
10 Feb 2016
1