Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03825
Cited By
SmoothGrad: removing noise by adding noise
12 June 2017
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SmoothGrad: removing noise by adding noise"
11 / 1,161 papers shown
Title
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
18
241
0
02 Feb 2018
Training Set Debugging Using Trusted Items
Xuezhou Zhang
Xiaojin Zhu
Stephen J. Wright
11
73
0
24 Jan 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
30
536
0
21 Jan 2018
Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Heyi Li
Yunke Tian
Klaus Mueller
Xin Chen
FAtt
19
38
0
22 Dec 2017
A Perceptual Measure for Deep Single Image Camera Calibration
Yannick Hold-Geoffroy
Kalyan Sunkavalli
Jonathan Eisenmann
Matt Fisher
Emiliano Gambaretto
Sunil Hadap
Jean-François Lalonde
3DV
16
106
0
02 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,791
0
30 Nov 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
26
675
0
26 Nov 2017
No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World
S. Shankar
Yoni Halpern
Eric Breck
James Atwood
Jimbo Wilson
D. Sculley
11
287
0
22 Nov 2017
Towards better understanding of gradient-based attribution methods for Deep Neural Networks
Marco Ancona
Enea Ceolini
Cengiz Öztireli
Markus Gross
FAtt
19
145
0
16 Nov 2017
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
31
678
0
02 Nov 2017
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
16
338
0
16 May 2017
Previous
1
2
3
...
22
23
24