Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03662
Cited By
Practical Gauss-Newton Optimisation for Deep Learning
12 June 2017
Aleksandar Botev
H. Ritter
David Barber
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Gauss-Newton Optimisation for Deep Learning"
8 / 8 papers shown
Title
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
58
0
0
18 Oct 2024
Influence Functions for Scalable Data Attribution in Diffusion Models
Bruno Mlodozeniec
Runa Eschenhagen
Juhan Bae
Alexander Immer
David Krueger
Richard E. Turner
DiffM
TDI
86
4
0
17 Oct 2024
Stochastic Hessian Fittings with Lie Groups
Xi-Lin Li
69
1
0
19 Feb 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
72
0
0
08 Feb 2024
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
93
2
0
07 Jul 2021
Practical Quasi-Newton Methods for Training Deep Neural Networks
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
53
105
0
16 Jun 2020
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
113
6,619
0
22 Dec 2012
No More Pesky Learning Rates
Tom Schaul
Sixin Zhang
Yann LeCun
97
477
0
06 Jun 2012
1