ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.03459
  4. Cited By
Optimal Auctions through Deep Learning: Advances in Differentiable
  Economics

Optimal Auctions through Deep Learning: Advances in Differentiable Economics

12 June 2017
Paul Dutting
Zhe Feng
Harikrishna Narasimhan
David C. Parkes
S. Ravindranath
ArXivPDFHTML

Papers citing "Optimal Auctions through Deep Learning: Advances in Differentiable Economics"

11 / 11 papers shown
Title
LLM-Powered Preference Elicitation in Combinatorial Assignment
LLM-Powered Preference Elicitation in Combinatorial Assignment
Ermis Soumalias
Yanchen Jiang
Kehang Zhu
Michael J. Curry
Sven Seuken
David C. Parkes
90
1
0
14 Feb 2025
The Bandit Whisperer: Communication Learning for Restless Bandits
The Bandit Whisperer: Communication Learning for Restless Bandits
Yunfan Zhao
Tonghan Wang
Dheeraj M. Nagaraj
Aparna Taneja
Milind Tambe
92
6
0
11 Aug 2024
Large-Scale Contextual Market Equilibrium Computation through Deep Learning
Large-Scale Contextual Market Equilibrium Computation through Deep Learning
Yunxuan Ma
Yide Bian
Hao Xu
Weitao Yang
Jingshu Zhao
Zhijian Duan
Feng Wang
Xiaotie Deng
58
0
0
11 Jun 2024
Learning to Mitigate AI Collusion on Economic Platforms
Learning to Mitigate AI Collusion on Economic Platforms
Gianluca Brero
N. Lepore
Eric Mibuari
David C. Parkes
30
14
0
15 Feb 2022
Learning Revenue-Maximizing Auctions With Differentiable Matching
Learning Revenue-Maximizing Auctions With Differentiable Matching
Michael J. Curry
Uro Lyi
Tom Goldstein
John P. Dickerson
33
20
0
15 Jun 2021
PreferenceNet: Encoding Human Preferences in Auction Design with Deep
  Learning
PreferenceNet: Encoding Human Preferences in Auction Design with Deep Learning
Neehar Peri
Michael J. Curry
Samuel Dooley
John P. Dickerson
46
31
0
06 Jun 2021
ProportionNet: Balancing Fairness and Revenue for Auction Design with
  Deep Learning
ProportionNet: Balancing Fairness and Revenue for Auction Design with Deep Learning
Kevin Kuo
Anthony Ostuni
Elizabeth Horishny
Michael J. Curry
Samuel Dooley
Ping Yeh-Chiang
Tom Goldstein
John P. Dickerson
36
25
0
13 Oct 2020
Auction learning as a two-player game
Auction learning as a two-player game
Jad Rahme
Samy Jelassia
Matthew Weinberga
47
45
0
10 Jun 2020
A Permutation-Equivariant Neural Network Architecture For Auction Design
A Permutation-Equivariant Neural Network Architecture For Auction Design
Jad Rahme
Samy Jelassi
Joan Bruna
S. M. Weinberg
46
46
0
02 Mar 2020
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
177
741
0
24 May 2017
Learning Simple Auctions
Learning Simple Auctions
Jamie Morgenstern
Tim Roughgarden
48
127
0
11 Apr 2016
1