Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.02952
Cited By
TIP: Typifying the Interpretability of Procedures
9 June 2017
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TIP: Typifying the Interpretability of Procedures"
22 / 22 papers shown
Title
An Overview of Machine Teaching
Xiaojin Zhu
Adish Singla
Sandra Zilles
Anna N. Rafferty
59
178
0
18 Jan 2018
Efficient Data Representation by Selecting Prototypes with Importance Weights
Karthik S. Gurumoorthy
Amit Dhurandhar
Guillermo Cecchi
Charu Aggarwal
64
22
0
05 Jul 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
280
2,264
0
24 Jun 2017
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
64
172
0
23 May 2017
Learning with Changing Features
Amit Dhurandhar
Steve Hanneke
Liu Yang
OOD
25
1
0
29 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
388
3,785
0
28 Feb 2017
Algorithms for Fitting the Constrained Lasso
Brian R. Gaines
Hua Zhou
196
119
0
28 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
289
19,981
0
07 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
258
8,550
0
16 Aug 2016
Interpretable Two-level Boolean Rule Learning for Classification
Guolong Su
Dennis L. Wei
Kush R. Varshney
Dmitry Malioutov
59
52
0
18 Jun 2016
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
110
812
0
13 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
178
3,699
0
10 Jun 2016
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
81
5
0
30 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
Anh Totti Nguyen
J. Yosinski
Jeff Clune
54
329
0
11 Feb 2016
Engineering Safety in Machine Learning
Kush R. Varshney
65
116
0
16 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Unifying distillation and privileged information
David Lopez-Paz
Léon Bottou
Bernhard Schölkopf
V. Vapnik
FedML
165
462
0
11 Nov 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
342
19,634
0
09 Mar 2015
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
298
3,883
0
19 Dec 2014
Falling Rule Lists
Fulton Wang
Cynthia Rudin
52
258
0
21 Nov 2014
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
162
2,117
0
21 Dec 2013
1