ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.02524
  4. Cited By
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes

Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes

8 June 2017
Hyunjik Kim
Yee Whye Teh
ArXivPDFHTML

Papers citing "Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes"

13 / 13 papers shown
Title
Trace Encoding in Process Mining: a survey and benchmarking
Trace Encoding in Process Mining: a survey and benchmarking
Sylvio Barbon Junior
Paolo Ceravolo
R. Oyamada
G. Tavares
AI4TS
31
20
0
05 Jan 2023
Constraining Gaussian Processes to Systems of Linear Ordinary
  Differential Equations
Constraining Gaussian Processes to Systems of Linear Ordinary Differential Equations
Andreas Besginow
Markus Lange-Hegermann
32
11
0
26 Aug 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
  Inference in Sparsity-Aware Modeling
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
68
75
0
28 May 2022
Surrogate modeling for Bayesian optimization beyond a single Gaussian
  process
Surrogate modeling for Bayesian optimization beyond a single Gaussian process
Qin Lu
Konstantinos D. Polyzos
Bingcong Li
G. Giannakis
GP
20
18
0
27 May 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
53
24
0
13 Oct 2021
Online structural kernel selection for mobile health
Online structural kernel selection for mobile health
Eura Shin
Pedja Klasnja
S. Murphy
Finale Doshi-Velez
22
1
0
21 Jul 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Time series forecasting with Gaussian Processes needs priors
Time series forecasting with Gaussian Processes needs priors
Giorgio Corani
A. Benavoli
Marco Zaffalon
GP
AI4TS
15
28
0
17 Sep 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
Large Scale Tensor Regression using Kernels and Variational Inference
Large Scale Tensor Regression using Kernels and Variational Inference
Robert Hu
Geoff K. Nicholls
Dino Sejdinovic
15
4
0
11 Feb 2020
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
1