ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09851
  4. Cited By
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and
  High Frequency Trading

Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading

27 May 2017
M. Dixon
Nicholas G. Polson
Vadim Sokolov
    AI4TS
ArXivPDFHTML

Papers citing "Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading"

20 / 20 papers shown
Title
Generative Bayesian Computation for Maximum Expected Utility
Generative Bayesian Computation for Maximum Expected Utility
Nick Polson
Fabrizio Ruggeri
Vadim Sokolov
29
1
0
28 Aug 2024
PAMS: Platform for Artificial Market Simulations
PAMS: Platform for Artificial Market Simulations
Masanori Hirano
Ryosuke Takata
Kiyoshi Izumi
23
2
0
19 Sep 2023
Generative AI for Bayesian Computation
Generative AI for Bayesian Computation
Nicholas G. Polson
Vadim Sokolov
BDL
30
5
0
24 May 2023
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
21
45
0
05 Jun 2022
Deep Generative Models for Vehicle Speed Trajectories
Deep Generative Models for Vehicle Speed Trajectories
F. Behnia
D. Karbowski
Vadim Sokolov
33
1
0
14 Dec 2021
Merging Two Cultures: Deep and Statistical Learning
Merging Two Cultures: Deep and Statistical Learning
A. Bhadra
J. Datta
Nicholas G. Polson
Vadim Sokolov
Jianeng Xu
BDL
43
9
0
22 Oct 2021
Clustering of Time Series Data with Prior Geographical Information
Clustering of Time Series Data with Prior Geographical Information
Reza Asadi
Amelia Regan
AI4TS
18
2
0
03 Jul 2021
A Reinforcement Learning Based Encoder-Decoder Framework for Learning
  Stock Trading Rules
A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules
Mehran Taghian
A. Asadi
Reza Safabakhsh
AI4TS
16
1
0
08 Jan 2021
Lifelong Property Price Prediction: A Case Study for the Toronto Real
  Estate Market
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market
Hao Peng
Jianxin Li
Z. Wang
Renyu Yang
Mingzhe Liu
Mingming Zhang
Philip S. Yu
Lifang He
3DV
27
26
0
12 Aug 2020
Industrial Forecasting with Exponentially Smoothed Recurrent Neural
  Networks
Industrial Forecasting with Exponentially Smoothed Recurrent Neural Networks
M. Dixon
AI4TS
18
14
0
09 Apr 2020
Deep Learning for Spatio-Temporal Data Mining: A Survey
Deep Learning for Spatio-Temporal Data Mining: A Survey
Senzhang Wang
Jiannong Cao
Philip S. Yu
AI4TS
26
549
0
11 Jun 2019
Deep Fundamental Factor Models
Deep Fundamental Factor Models
M. Dixon
Nicholas G. Polson
26
9
0
18 Mar 2019
Deep Learning: Computational Aspects
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINN
BDL
AI4CE
8
14
0
26 Aug 2018
Deep Learning for Energy Markets
Deep Learning for Energy Markets
Michael Polson
Vadim Sokolov
AI4TS
9
26
0
16 Aug 2018
Deep Learning
Deep Learning
Nicholas G. Polson
Vadim Sokolov
AI4CE
BDL
25
1
0
20 Jul 2018
Deep Echo State Networks with Uncertainty Quantification for
  Spatio-Temporal Forecasting
Deep Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting
Patrick L. McDermott
C. Wikle
BDL
18
78
0
28 Jun 2018
Deep Reinforcement Learning for Dynamic Urban Transportation Problems
Deep Reinforcement Learning for Dynamic Urban Transportation Problems
Laura Schultz
Vadim Sokolov
AI4CE
19
12
0
14 Jun 2018
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying
  Uncertainty in Spatial-Temporal Data
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
Patrick L. McDermott
C. Wikle
BDL
UQCV
32
96
0
02 Nov 2017
Deep Learning: A Bayesian Perspective
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
31
115
0
01 Jun 2017
Prediction, Expectation, and Surprise: Methods, Designs, and Study of a
  Deployed Traffic Forecasting Service
Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service
Eric Horvitz
Johnson Apacible
Raman Sarin
Lin Liao
AI4TS
36
192
0
04 Jul 2012
1