ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09518
  4. Cited By
A Sampling Theory Perspective of Graph-based Semi-supervised Learning
v1v2 (latest)

A Sampling Theory Perspective of Graph-based Semi-supervised Learning

26 May 2017
Aamir Anis
Aly El Gamal
A. Avestimehr
Antonio Ortega
ArXiv (abs)PDFHTML

Papers citing "A Sampling Theory Perspective of Graph-based Semi-supervised Learning"

6 / 6 papers shown
Title
Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction
Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction
Jhon A. Castro-Correa
Jhony H. Giraldo
Mohsen Badiey
Fragkiskos D. Malliaros
79
11
0
28 Mar 2024
Graph CNN for Moving Object Detection in Complex Environments from
  Unseen Videos
Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos
Jhony H. Giraldo
S. Javed
Naoufel Werghi
T. Bouwmans
40
26
0
13 Jul 2022
Sampling Signals on Graphs: From Theory to Applications
Sampling Signals on Graphs: From Theory to Applications
Yuichi Tanaka
Yonina C. Eldar
Antonio Ortega
Gene Cheung
58
10
0
09 Mar 2020
GraphBGS: Background Subtraction via Recovery of Graph Signals
GraphBGS: Background Subtraction via Recovery of Graph Signals
Jhony H. Giraldo
T. Bouwmans
112
25
0
17 Jan 2020
Network Classifiers With Output Smoothing
Network Classifiers With Output Smoothing
Elsa Rizk
Roula Nassif
Ali H. Sayed
26
1
0
30 Oct 2019
Laplacian Networks: Bounding Indicator Function Smoothness for Neural
  Network Robustness
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
86
16
0
24 May 2018
1