ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09021
19
18

Learning to Pour

25 May 2017
Yongqiang Huang
Yu Sun
ArXivPDFHTML
Abstract

Pouring is a simple task people perform daily. It is the second most frequently executed motion in cooking scenarios, after pick-and-place. We present a pouring trajectory generation approach, which uses force feedback from the cup to determine the future velocity of pouring. The approach uses recurrent neural networks as its building blocks. We collected the pouring demonstrations which we used for training. To test our approach in simulation, we also created and trained a force estimation system. The simulated experiments show that the system is able to generalize to single unseen element of the pouring characteristics.

View on arXiv
Comments on this paper