ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08378
  4. Cited By
Detecting Adversarial Image Examples in Deep Networks with Adaptive
  Noise Reduction
v1v2v3v4v5 (latest)

Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction

23 May 2017
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
    AAML
ArXiv (abs)PDFHTML

Papers citing "Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction"

37 / 37 papers shown
Title
Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
Wenyuan Wu
Zheng Liu
Yong Chen
Chao Su
Dezhong Peng
Xu Wang
AAML
184
0
0
24 Feb 2025
2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
Xinheng Xie
Kureha Yamaguchi
Margaux Leblanc
Simon Malzard
Varun Chhabra
Victoria Nockles
Yue-bo Wu
AAML
219
1
0
08 Sep 2024
Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments
Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments
Vivswan Shah
Nathan Youngblood
81
2
0
04 Feb 2024
Evaluation: from precision, recall and F-measure to ROC, informedness,
  markedness and correlation
Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
D. Powers
175
5,293
0
11 Oct 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
99
73
0
07 Aug 2020
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
160
2,159
0
21 Aug 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
131
1,864
0
20 May 2017
Deep Text Classification Can be Fooled
Deep Text Classification Can be Fooled
Bin Liang
Hongcheng Li
Miaoqiang Su
Pan Bian
Xirong Li
Wenchang Shi
AAML
75
425
0
26 Apr 2017
Adversarial and Clean Data Are Not Twins
Adversarial and Clean Data Are Not Twins
Zhitao Gong
Wenlu Wang
Wei-Shinn Ku
AAML
59
157
0
17 Apr 2017
Enhancing Robustness of Machine Learning Systems via Data
  Transformations
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
50
231
0
09 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural
  Networks
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
87
1,271
0
04 Apr 2017
Detecting Adversarial Samples from Artifacts
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
93
894
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
76
714
0
21 Feb 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Adversarial Examples Detection in Deep Networks with Convolutional
  Filter Statistics
Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics
Xin Li
Fuxin Li
GANAAML
113
365
0
22 Dec 2016
Learning Adversary-Resistant Deep Neural Networks
Learning Adversary-Resistant Deep Neural Networks
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
Xue Liu
C. Lee Giles
AAML
66
43
0
05 Dec 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLRMIALMMIACV
272
4,159
0
18 Oct 2016
Adversary Resistant Deep Neural Networks with an Application to Malware
  Detection
Adversary Resistant Deep Neural Networks with an Application to Malware Detection
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
C. Lee Giles
Xue Liu
AAML
59
175
0
05 Oct 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
65
514
0
03 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
266
8,579
0
16 Aug 2016
A study of the effect of JPG compression on adversarial images
A study of the effect of JPG compression on adversarial images
Gintare Karolina Dziugaite
Zoubin Ghahramani
Daniel M. Roy
AAML
86
534
0
02 Aug 2016
Early Methods for Detecting Adversarial Images
Early Methods for Detecting Adversarial Images
Dan Hendrycks
Kevin Gimpel
AAML
81
236
0
01 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
545
5,909
0
08 Jul 2016
Adversarial Perturbations Against Deep Neural Networks for Malware
  Classification
Adversarial Perturbations Against Deep Neural Networks for Malware Classification
Kathrin Grosse
Nicolas Papernot
Praveen Manoharan
Michael Backes
Patrick McDaniel
AAML
67
418
0
14 Jun 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAUAAML
75
3,682
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
115
3,967
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
113
3,077
0
14 Nov 2015
Character-level Convolutional Networks for Text Classification
Character-level Convolutional Networks for Text Classification
Xiang Zhang
Jiaqi Zhao
Yann LeCun
268
6,130
0
04 Sep 2015
Deep Learning and Music Adversaries
Deep Learning and Music Adversaries
Corey Kereliuk
Bob L. T. Sturm
J. Larsen
AAML
73
137
0
16 Jul 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,107
0
20 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
485
43,694
0
17 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
280
14,713
0
20 Jun 2014
Deep Learning Face Representation by Joint Identification-Verification
Deep Learning Face Representation by Joint Identification-Verification
Yi Sun
Xiaogang Wang
Xiaoou Tang
CVBM
227
2,246
0
18 Jun 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,961
1
21 Dec 2013
Building high-level features using large scale unsupervised learning
Building high-level features using large scale unsupervised learning
Quoc V. Le
MarcÁurelio Ranzato
R. Monga
M. Devin
Kai Chen
G. Corrado
J. Dean
A. Ng
SSLOffRLCVBM
122
2,272
0
29 Dec 2011
1