ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08209
  4. Cited By
Unbiasing Truncated Backpropagation Through Time

Unbiasing Truncated Backpropagation Through Time

23 May 2017
Corentin Tallec
Yann Ollivier
ArXivPDFHTML

Papers citing "Unbiasing Truncated Backpropagation Through Time"

23 / 23 papers shown
Title
Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
José Daniel Viqueira
Daniel Faílde
M. M. Juane
Andrés Gómez
David Mera
30
5
0
31 Oct 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution
  Strategies
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
56
5
0
21 Apr 2023
Deep Subspace Encoders for Nonlinear System Identification
Deep Subspace Encoders for Nonlinear System Identification
G. Beintema
Maarten Schoukens
R. Tóth
30
34
0
26 Oct 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
34
76
0
19 Jul 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
55
151
0
01 Jun 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
47
19
0
13 Mar 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
68
0
27 Dec 2021
Gradients are Not All You Need
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body
  Simulation
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation
C. Freeman
Erik Frey
Anton Raichuk
Sertan Girgin
Igor Mordatch
Olivier Bachem
48
355
0
24 Jun 2021
Non-Autoregressive vs Autoregressive Neural Networks for System
  Identification
Non-Autoregressive vs Autoregressive Neural Networks for System Identification
Daniel Weber
C. Gühmann
27
7
0
05 May 2021
RIANN -- A Robust Neural Network Outperforms Attitude Estimation Filters
RIANN -- A Robust Neural Network Outperforms Attitude Estimation Filters
Daniel Weber
C. Gühmann
Thomas Seel
23
35
0
15 Apr 2021
A Helmholtz equation solver using unsupervised learning: Application to
  transcranial ultrasound
A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
16
32
0
29 Oct 2020
Training Stronger Baselines for Learning to Optimize
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
27
51
0
18 Oct 2020
Tasks, stability, architecture, and compute: Training more effective
  learned optimizers, and using them to train themselves
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
35
62
0
23 Sep 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
34
7
0
05 Jun 2020
Adaptively Truncating Backpropagation Through Time to Control Gradient
  Bias
Adaptively Truncating Backpropagation Through Time to Control Gradient Bias
Christopher Aicher
N. Foti
E. Fox
MQ
30
32
0
17 May 2019
Learning Discrete Structures for Graph Neural Networks
Learning Discrete Structures for Graph Neural Networks
Luca Franceschi
Mathias Niepert
Massimiliano Pontil
X. He
GNN
30
410
0
28 Mar 2019
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning
Frederik Benzing
M. Gauy
Asier Mujika
A. Martinsson
Angelika Steger
23
22
0
11 Feb 2019
Approximating Real-Time Recurrent Learning with Random Kronecker Factors
Approximating Real-Time Recurrent Learning with Random Kronecker Factors
Asier Mujika
Florian Meier
Angelika Steger
19
61
0
28 May 2018
Reviving and Improving Recurrent Back-Propagation
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
44
118
0
16 Mar 2018
Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent
  Networks
Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent Networks
Nan Rosemary Ke
Anirudh Goyal
O. Bilaniuk
Jonathan Binas
Laurent Charlin
C. Pal
Yoshua Bengio
35
15
0
07 Nov 2017
Regularizing and Optimizing LSTM Language Models
Regularizing and Optimizing LSTM Language Models
Stephen Merity
N. Keskar
R. Socher
95
1,091
0
07 Aug 2017
1