ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08051
  4. Cited By
Wasserstein Learning of Deep Generative Point Process Models

Wasserstein Learning of Deep Generative Point Process Models

23 May 2017
Shuai Xiao
Mehrdad Farajtabar
X. Ye
Junchi Yan
Le Song
H. Zha
    DiffM
ArXivPDFHTML

Papers citing "Wasserstein Learning of Deep Generative Point Process Models"

5 / 5 papers shown
Title
Neural Spatiotemporal Point Processes: Trends and Challenges
Neural Spatiotemporal Point Processes: Trends and Challenges
Sumantrak Mukherjee
Mouad Elhamdi
George Mohler
David Selby
Yao Xie
Sebastian Vollmer
Gerrit Grossmann
AI4TS
370
1
0
13 Feb 2025
Differentiable Adversarial Attacks for Marked Temporal Point Processes
Differentiable Adversarial Attacks for Marked Temporal Point Processes
Pritish Chakraborty
Vinayak Gupta
R. Raj
Srikanta J. Bedathur
A. De
AAML
416
0
0
17 Jan 2025
Recurrent Neural Goodness-of-Fit Test for Time Series
Recurrent Neural Goodness-of-Fit Test for Time Series
Aoran Zhang
Wenbin Zhou
Liyan Xie
Shixiang Zhu
52
1
0
17 Oct 2024
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
139
9,509
0
31 Mar 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
74
2,102
0
17 Jan 2017
1