Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.04591
Cited By
Learning ReLUs via Gradient Descent
10 May 2017
Mahdi Soltanolkotabi
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning ReLUs via Gradient Descent"
49 / 49 papers shown
Title
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
37
18
0
07 Sep 2023
On Single Index Models beyond Gaussian Data
Joan Bruna
Loucas Pillaud-Vivien
Aaron Zweig
18
10
0
28 Jul 2023
A faster and simpler algorithm for learning shallow networks
Sitan Chen
Shyam Narayanan
41
7
0
24 Jul 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
42
33
0
18 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
Ilias Diakonikolas
D. Kane
Lisheng Ren
17
26
0
13 Feb 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
SQ Lower Bounds for Learning Single Neurons with Massart Noise
Ilias Diakonikolas
D. Kane
Lisheng Ren
Yuxin Sun
25
6
0
18 Oct 2022
Towards Theoretically Inspired Neural Initialization Optimization
Yibo Yang
Hong Wang
Haobo Yuan
Zhouchen Lin
26
9
0
12 Oct 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
25
114
0
30 Jun 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
32
34
0
12 May 2022
ReLU Regression with Massart Noise
Ilias Diakonikolas
Jongho Park
Christos Tzamos
56
11
0
10 Sep 2021
Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
Zixin Wen
Yuanzhi Li
SSL
MLT
32
131
0
31 May 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Nonparametric Learning of Two-Layer ReLU Residual Units
Zhunxuan Wang
Linyun He
Chunchuan Lyu
Shay B. Cohen
MLT
OffRL
33
1
0
17 Aug 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
19
5
0
25 Jul 2020
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals
Ilias Diakonikolas
D. Kane
Nikos Zarifis
19
66
0
29 Jun 2020
Approximation Schemes for ReLU Regression
Ilias Diakonikolas
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
Mahdi Soltanolkotabi
18
51
0
26 May 2020
Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators
Reinhard Heckel
Mahdi Soltanolkotabi
DiffM
35
81
0
31 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Learning Distributions Generated by One-Layer ReLU Networks
Shanshan Wu
A. Dimakis
Sujay Sanghavi
11
22
0
04 Sep 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
38
136
0
10 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
24
18
0
07 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
26
181
0
01 Apr 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
21
94
0
24 Jan 2019
Convex Relaxations of Convolutional Neural Nets
Burak Bartan
Mert Pilanci
20
5
0
31 Dec 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,122
0
09 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
23
191
0
29 Oct 2018
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
26
117
0
17 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
36
57
0
16 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
53
1,252
0
04 Oct 2018
On the loss landscape of a class of deep neural networks with no bad local valleys
Quynh N. Nguyen
Mahesh Chandra Mukkamala
Matthias Hein
16
87
0
27 Sep 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
Adding One Neuron Can Eliminate All Bad Local Minima
Shiyu Liang
Ruoyu Sun
J. Lee
R. Srikant
37
89
0
22 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
30
17
0
20 May 2018
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition
Samet Oymak
Mahdi Soltanolkotabi
21
12
0
16 May 2018
Understanding the Loss Surface of Neural Networks for Binary Classification
Shiyu Liang
Ruoyu Sun
Yixuan Li
R. Srikant
32
87
0
19 Feb 2018
Learning One Convolutional Layer with Overlapping Patches
Surbhi Goel
Adam R. Klivans
Raghu Meka
MLT
18
80
0
07 Feb 2018
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
41
39
0
05 Feb 2018
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
36
415
0
16 Jul 2017
The loss surface of deep and wide neural networks
Quynh N. Nguyen
Matthias Hein
ODL
51
283
0
26 Apr 2017
Fast and Reliable Parameter Estimation from Nonlinear Observations
Samet Oymak
Mahdi Soltanolkotabi
35
25
0
23 Oct 2016
1