ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.01968
  4. Cited By
A Workflow for Visual Diagnostics of Binary Classifiers using
  Instance-Level Explanations

A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations

4 May 2017
Josua Krause
Aritra Dasgupta
Jordan Swartz
Yindalon Aphinyanagphongs
E. Bertini
    FAtt
ArXivPDFHTML

Papers citing "A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations"

21 / 21 papers shown
Title
MLMC: Interactive multi-label multi-classifier evaluation without confusion matrices
MLMC: Interactive multi-label multi-classifier evaluation without confusion matrices
Aleksandar Doknic
Torsten Moller
HAI
42
0
0
24 Jan 2025
TRIVEA: Transparent Ranking Interpretation using Visual Explanation of
  Black-Box Algorithmic Rankers
TRIVEA: Transparent Ranking Interpretation using Visual Explanation of Black-Box Algorithmic Rankers
Jun Yuan
Kaustav Bhattacharjee
A. Islam
Aritra Dasgupta
25
2
0
28 Aug 2023
The State of the Art in Enhancing Trust in Machine Learning Models with
  the Use of Visualizations
The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Angelos Chatzimparmpas
R. Martins
I. Jusufi
K. Kucher
Fabrice Rossi
A. Kerren
FAtt
26
160
0
22 Dec 2022
ModSandbox: Facilitating Online Community Moderation Through Error
  Prediction and Improvement of Automated Rules
ModSandbox: Facilitating Online Community Moderation Through Error Prediction and Improvement of Automated Rules
Jean Y. Song
Sangwook Lee
Jisoo Lee
Mina Kim
Juho Kim
34
11
0
18 Oct 2022
HetVis: A Visual Analysis Approach for Identifying Data Heterogeneity in
  Horizontal Federated Learning
HetVis: A Visual Analysis Approach for Identifying Data Heterogeneity in Horizontal Federated Learning
Xumeng Wang
Wei Chen
Jiazhi Xia
Zhen Wen
Rongchen Zhu
Tobias Schreck
FedML
26
20
0
16 Aug 2022
Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts
Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts
Ashley Suh
G. Appleby
Erik W. Anderson
Luca A. Finelli
Remco Chang
Dylan Cashman
35
8
0
11 May 2022
Black-box Error Diagnosis in Deep Neural Networks for Computer Vision: a
  Survey of Tools
Black-box Error Diagnosis in Deep Neural Networks for Computer Vision: a Survey of Tools
Piero Fraternali
Federico Milani
Rocio Nahime Torres
Niccolò Zangrando
AAML
33
9
0
17 Jan 2022
Model Doctor: A Simple Gradient Aggregation Strategy for Diagnosing and
  Treating CNN Classifiers
Model Doctor: A Simple Gradient Aggregation Strategy for Diagnosing and Treating CNN Classifiers
Zunlei Feng
Jiacong Hu
Sai Wu
Xiaotian Yu
Mingli Song
Xiuming Zhang
40
13
0
09 Dec 2021
Explainable Adversarial Attacks in Deep Neural Networks Using Activation
  Profiles
Explainable Adversarial Attacks in Deep Neural Networks Using Activation Profiles
G. Cantareira
R. Mello
F. Paulovich
AAML
24
9
0
18 Mar 2021
A Survey of Visual Analytics Techniques for Machine Learning
A Survey of Visual Analytics Techniques for Machine Learning
Jun Yuan
Changjian Chen
Weikai Yang
Mengchen Liu
Jiazhi Xia
Shixia Liu
21
216
0
21 Aug 2020
Explainable Matrix -- Visualization for Global and Local
  Interpretability of Random Forest Classification Ensembles
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
33
88
0
08 May 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual
  Approach
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
19
69
0
21 Jan 2020
explAIner: A Visual Analytics Framework for Interactive and Explainable
  Machine Learning
explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning
Thilo Spinner
U. Schlegel
H. Schäfer
Mennatallah El-Assady
HAI
15
234
0
29 Jul 2019
Visual Interaction with Deep Learning Models through Collaborative
  Semantic Inference
Visual Interaction with Deep Learning Models through Collaborative Semantic Inference
Sebastian Gehrmann
Hendrik Strobelt
Robert Krüger
Hanspeter Pfister
Alexander M. Rush
HAI
21
57
0
24 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
57
483
0
09 Jul 2019
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine
  Learning
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
Ángel Alexander Cabrera
Will Epperson
Fred Hohman
Minsuk Kahng
Jamie Morgenstern
Duen Horng Chau
FaML
19
183
0
10 Apr 2019
VINE: Visualizing Statistical Interactions in Black Box Models
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
22
21
0
01 Apr 2019
A User-based Visual Analytics Workflow for Exploratory Model Analysis
A User-based Visual Analytics Workflow for Exploratory Model Analysis
Dylan Cashman
S. Humayoun
Florian Heimerl
Kendall Park
Subhajit Das
...
Abigail Mosca
J. Stasko
Alex Endert
Michael Gleicher
Remco Chang
21
41
0
27 Sep 2018
RuleMatrix: Visualizing and Understanding Classifiers with Rules
RuleMatrix: Visualizing and Understanding Classifiers with Rules
Yao Ming
Huamin Qu
E. Bertini
FAtt
20
214
0
17 Jul 2018
The Challenge of Crafting Intelligible Intelligence
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
241
0
09 Mar 2018
1