ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.00574
22
1

Forced to Learn: Discovering Disentangled Representations Without Exhaustive Labels

1 May 2017
Alexey Romanov
Anna Rumshisky
    OOD
    SSL
    DRL
ArXivPDFHTML
Abstract

Learning a better representation with neural networks is a challenging problem, which was tackled extensively from different prospectives in the past few years. In this work, we focus on learning a representation that could be used for a clustering task and introduce two novel loss components that substantially improve the quality of produced clusters, are simple to apply to an arbitrary model and cost function, and do not require a complicated training procedure. We evaluate them on two most common types of models, Recurrent Neural Networks and Convolutional Neural Networks, showing that the approach we propose consistently improves the quality of KMeans clustering in terms of Adjusted Mutual Information score and outperforms previously proposed methods.

View on arXiv
Comments on this paper