ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.08331
  4. Cited By
Joint Semantic and Motion Segmentation for dynamic scenes using Deep
  Convolutional Networks

Joint Semantic and Motion Segmentation for dynamic scenes using Deep Convolutional Networks

18 April 2017
Nazrul Haque
Dinesh Reddy Narapureddy
K. M. Krishna
ArXivPDFHTML

Papers citing "Joint Semantic and Motion Segmentation for dynamic scenes using Deep Convolutional Networks"

7 / 7 papers shown
Title
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust
  Semantic Pixel-Wise Labelling
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
Vijay Badrinarayanan
Ankur Handa
R. Cipolla
SSeg
225
799
0
27 May 2015
Efficient piecewise training of deep structured models for semantic
  segmentation
Efficient piecewise training of deep structured models for semantic segmentation
Guosheng Lin
Chunhua Shen
Anton van dan Hengel
Ian Reid
VLM
SSeg
130
924
0
04 Apr 2015
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks
  for Semantic Segmentation
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation
Jifeng Dai
Kaiming He
Jian Sun
179
1,044
0
05 Mar 2015
Semantic Image Segmentation with Deep Convolutional Nets and Fully
  Connected CRFs
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
164
4,892
0
22 Dec 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
265
14,704
0
20 Jun 2014
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
Karen Simonyan
Andrew Zisserman
237
7,526
0
09 Jun 2014
Efficient Inference in Fully Connected CRFs with Gaussian Edge
  Potentials
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
Philipp Krahenbuhl
V. Koltun
121
3,452
0
20 Oct 2012
1