Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.07423
Cited By
High-Dimensional Materials and Process Optimization using Data-driven Experimental Design with Well-Calibrated Uncertainty Estimates
21 April 2017
Julia Ling
Maxwell Hutchinson
Erin Antono
S. Paradiso
B. Meredig
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-Dimensional Materials and Process Optimization using Data-driven Experimental Design with Well-Calibrated Uncertainty Estimates"
20 / 20 papers shown
Title
Materials Informatics: An Algorithmic Design Rule
B. Bishnoi
14
0
0
05 May 2023
Interpretable models for extrapolation in scientific machine learning
Eric S. Muckley
J. Saal
B. Meredig
C. Roper
James H. Martin
26
34
0
16 Dec 2022
Robustness in Fatigue Strength Estimation
D. Weichert
Alexander Kister
Sebastian Houben
G. Ernis
Stefan Wrobel
21
1
0
02 Dec 2022
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Jenna C. Fromer
Connor W. Coley
34
66
0
13 Oct 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei Chen
AI4CE
31
11
0
11 Jul 2022
Multivariate Prediction Intervals for Random Forests
Brendan Folie
Maxwell Hutchinson
398
0
0
04 May 2022
Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing
Zhe Liu
Nicholas Rolston
Austin C. Flick
T. Colburn
Zekun Ren
R. Dauskardt
Tonio Buonassisi
32
116
0
01 Oct 2021
Bayesian Optimization in Materials Science: A Survey
Lars Kotthoff
H. Wahab
Patrick Johnson
AI4CE
11
10
0
29 Jul 2021
Uncertainty Prediction for Machine Learning Models of Material Properties
F. Tavazza
Brian L. DeCost
K. Choudhary
8
37
0
16 Jul 2021
Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest
Baldur Steingrimsson
Xuesong Fan
Anand Kulkarni
M. Gao
P. Liaw
AI4CE
11
4
0
05 Dec 2020
AutoMat: Accelerated Computational Electrochemical systems Discovery
Emil Annevelink
Rachel C. Kurchin
Eric S. Muckley
Lance Kavalsky
V. Hegde
...
J. Saal
Chris Rackauckas
Viral B. Shah
B. Meredig
V. Viswanathan
8
8
0
03 Nov 2020
Physics-informed machine learning for composition-process-property alloy design: shape memory alloy demonstration
Sen Liu
B. Kappes
B. Amin-ahmadi
O. Benafan
Xiaoli Zhang
A. Stebner
AI4CE
11
5
0
04 Mar 2020
Discovery of Self-Assembling
π
π
π
-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
Kirill Shmilovich
R. Mansbach
Hythem Sidky
Olivia E. Dunne
S. Panda
J. Tovar
Andrew L. Ferguson
28
76
0
27 Jan 2020
Machine-learned metrics for predicting the likelihood of success in materials discovery
Yoolhee Kim
Edward J. Kim
Erin Antono
B. Meredig
Julia Ling
17
26
0
25 Nov 2019
Assessing the Frontier: Active Learning, Model Accuracy, and Multi-objective Materials Discovery and Optimization
Z. Rosario
M. Rupp
Yoolhee Kim
Erin Antono
Julia Ling
13
3
0
06 Nov 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
33
122
0
05 Aug 2019
SMILES-X: autonomous molecular compounds characterization for small datasets without descriptors
G. Lambard
Ekaterina Gracheva
27
20
0
20 Jun 2019
A comparative study of feature selection methods for stress hotspot classification in materials
Ankita Mangal
Elizabeth A. Holm
11
62
0
19 Apr 2018
Overcoming data scarcity with transfer learning
Maxwell Hutchinson
Erin Antono
Brenna M. Gibbons
S. Paradiso
Julia Ling
B. Meredig
20
81
0
02 Nov 2017
Machine learning modeling of superconducting critical temperature
V. Stanev
C. Oses
A. Kusne
Efrain Rodriguez
J. Paglione
S. Curtarolo
Ichiro Takeuchi
15
366
0
08 Sep 2017
1