ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.07423
  4. Cited By
High-Dimensional Materials and Process Optimization using Data-driven
  Experimental Design with Well-Calibrated Uncertainty Estimates

High-Dimensional Materials and Process Optimization using Data-driven Experimental Design with Well-Calibrated Uncertainty Estimates

21 April 2017
Julia Ling
Maxwell Hutchinson
Erin Antono
S. Paradiso
B. Meredig
ArXivPDFHTML

Papers citing "High-Dimensional Materials and Process Optimization using Data-driven Experimental Design with Well-Calibrated Uncertainty Estimates"

20 / 20 papers shown
Title
Materials Informatics: An Algorithmic Design Rule
Materials Informatics: An Algorithmic Design Rule
B. Bishnoi
14
0
0
05 May 2023
Interpretable models for extrapolation in scientific machine learning
Interpretable models for extrapolation in scientific machine learning
Eric S. Muckley
J. Saal
B. Meredig
C. Roper
James H. Martin
26
34
0
16 Dec 2022
Robustness in Fatigue Strength Estimation
Robustness in Fatigue Strength Estimation
D. Weichert
Alexander Kister
Sebastian Houben
G. Ernis
Stefan Wrobel
21
1
0
02 Dec 2022
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Jenna C. Fromer
Connor W. Coley
34
66
0
13 Oct 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei Chen
AI4CE
31
11
0
11 Jul 2022
Multivariate Prediction Intervals for Random Forests
Multivariate Prediction Intervals for Random Forests
Brendan Folie
Maxwell Hutchinson
398
0
0
04 May 2022
Machine Learning with Knowledge Constraints for Process Optimization of
  Open-Air Perovskite Solar Cell Manufacturing
Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing
Zhe Liu
Nicholas Rolston
Austin C. Flick
T. Colburn
Zekun Ren
R. Dauskardt
Tonio Buonassisi
32
116
0
01 Oct 2021
Bayesian Optimization in Materials Science: A Survey
Bayesian Optimization in Materials Science: A Survey
Lars Kotthoff
H. Wahab
Patrick Johnson
AI4CE
11
10
0
29 Jul 2021
Uncertainty Prediction for Machine Learning Models of Material
  Properties
Uncertainty Prediction for Machine Learning Models of Material Properties
F. Tavazza
Brian L. DeCost
K. Choudhary
8
37
0
16 Jul 2021
Machine Learning and Data Analytics for Design and Manufacturing of
  High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of
  Interest
Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest
Baldur Steingrimsson
Xuesong Fan
Anand Kulkarni
M. Gao
P. Liaw
AI4CE
11
4
0
05 Dec 2020
AutoMat: Accelerated Computational Electrochemical systems Discovery
AutoMat: Accelerated Computational Electrochemical systems Discovery
Emil Annevelink
Rachel C. Kurchin
Eric S. Muckley
Lance Kavalsky
V. Hegde
...
J. Saal
Chris Rackauckas
Viral B. Shah
B. Meredig
V. Viswanathan
8
8
0
03 Nov 2020
Physics-informed machine learning for composition-process-property alloy
  design: shape memory alloy demonstration
Physics-informed machine learning for composition-process-property alloy design: shape memory alloy demonstration
Sen Liu
B. Kappes
B. Amin-ahmadi
O. Benafan
Xiaoli Zhang
A. Stebner
AI4CE
11
5
0
04 Mar 2020
Discovery of Self-Assembling $π$-Conjugated Peptides by Active
  Learning-Directed Coarse-Grained Molecular Simulation
Discovery of Self-Assembling πππ-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
Kirill Shmilovich
R. Mansbach
Hythem Sidky
Olivia E. Dunne
S. Panda
J. Tovar
Andrew L. Ferguson
28
76
0
27 Jan 2020
Machine-learned metrics for predicting the likelihood of success in
  materials discovery
Machine-learned metrics for predicting the likelihood of success in materials discovery
Yoolhee Kim
Edward J. Kim
Erin Antono
B. Meredig
Julia Ling
17
26
0
25 Nov 2019
Assessing the Frontier: Active Learning, Model Accuracy, and
  Multi-objective Materials Discovery and Optimization
Assessing the Frontier: Active Learning, Model Accuracy, and Multi-objective Materials Discovery and Optimization
Z. Rosario
M. Rupp
Yoolhee Kim
Erin Antono
Julia Ling
13
3
0
06 Nov 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
33
122
0
05 Aug 2019
SMILES-X: autonomous molecular compounds characterization for small
  datasets without descriptors
SMILES-X: autonomous molecular compounds characterization for small datasets without descriptors
G. Lambard
Ekaterina Gracheva
27
20
0
20 Jun 2019
A comparative study of feature selection methods for stress hotspot
  classification in materials
A comparative study of feature selection methods for stress hotspot classification in materials
Ankita Mangal
Elizabeth A. Holm
11
62
0
19 Apr 2018
Overcoming data scarcity with transfer learning
Overcoming data scarcity with transfer learning
Maxwell Hutchinson
Erin Antono
Brenna M. Gibbons
S. Paradiso
Julia Ling
B. Meredig
20
81
0
02 Nov 2017
Machine learning modeling of superconducting critical temperature
Machine learning modeling of superconducting critical temperature
V. Stanev
C. Oses
A. Kusne
Efrain Rodriguez
J. Paglione
S. Curtarolo
Ichiro Takeuchi
15
366
0
08 Sep 2017
1