ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.05674
  4. Cited By
Unsupervised object segmentation in video by efficient selection of
  highly probable positive features

Unsupervised object segmentation in video by efficient selection of highly probable positive features

19 April 2017
Emanuela Haller
Marius Leordeanu
    VOS
ArXivPDFHTML

Papers citing "Unsupervised object segmentation in video by efficient selection of highly probable positive features"

5 / 5 papers shown
Title
CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-Labeled Unconstrained Videos
CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-Labeled Unconstrained Videos
Soufiane Belharbi
Shakeeb Murtaza
M. Pedersoli
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
WSOL
69
4
0
28 Jan 2025
TCAM: Temporal Class Activation Maps for Object Localization in
  Weakly-Labeled Unconstrained Videos
TCAM: Temporal Class Activation Maps for Object Localization in Weakly-Labeled Unconstrained Videos
Soufiane Belharbi
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
WSOL
48
12
0
30 Aug 2022
Towards Accurate Generative Models of Video: A New Metric & Challenges
Towards Accurate Generative Models of Video: A New Metric & Challenges
Thomas Unterthiner
Sjoerd van Steenkiste
Karol Kurach
Raphaël Marinier
Marcin Michalski
Sylvain Gelly
EGVM
VGen
27
693
0
03 Dec 2018
Unsupervised learning of foreground object detection
Unsupervised learning of foreground object detection
Ioana Croitoru
Simion-Vlad Bogolin
Marius Leordeanu
OCL
28
48
0
14 Aug 2018
Learning a Robust Society of Tracking Parts using Co-occurrence
  Constraints
Learning a Robust Society of Tracking Parts using Co-occurrence Constraints
Elena Burceanu
Marius Leordeanu
23
10
0
05 Apr 2018
1