ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.04651
  4. Cited By
The Reactor: A fast and sample-efficient Actor-Critic agent for
  Reinforcement Learning

The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning

15 April 2017
A. Gruslys
Will Dabney
M. G. Azar
Bilal Piot
Marc G. Bellemare
Rémi Munos
ArXivPDFHTML

Papers citing "The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning"

14 / 14 papers shown
Title
Reverb: A Framework For Experience Replay
Reverb: A Framework For Experience Replay
Albin Cassirer
Gabriel Barth-Maron
E. Brevdo
Sabela Ramos
Toby Boyd
Thibault Sottiaux
M. Kroiss
VLM
OffRL
32
38
0
09 Feb 2021
A Survey on Deep Reinforcement Learning for Audio-Based Applications
A Survey on Deep Reinforcement Learning for Audio-Based Applications
S. Latif
Heriberto Cuayáhuitl
Farrukh Pervez
Fahad Shamshad
Hafiz Shehbaz Ali
Min Zhang
OffRL
47
73
0
01 Jan 2021
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
350
0
27 Apr 2020
Comprehensive Review of Deep Reinforcement Learning Methods and
  Applications in Economics
Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics
Amir H. Mosavi
Pedram Ghamisi
Yaser Faghan
Puhong Duan
OffRL
11
152
0
21 Mar 2020
A Survey of Deep Reinforcement Learning in Video Games
A Survey of Deep Reinforcement Learning in Video Games
Kun Shao
Zhentao Tang
Yuanheng Zhu
Nannan Li
Dongbin Zhao
OffRL
AI4TS
43
188
0
23 Dec 2019
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy
  Critics
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
Denis Steckelmacher
Hélène Plisnier
D. Roijers
A. Nowé
OffRL
23
17
0
11 Mar 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
24
361
0
30 Jan 2019
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's
  Mission Execution
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's Mission Execution
G. Lee
Chang Ouk Kim
8
4
0
17 Jan 2019
The Mirage of Action-Dependent Baselines in Reinforcement Learning
The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker
Surya Bhupatiraju
S. Gu
Richard Turner
Zoubin Ghahramani
Sergey Levine
OffRL
16
126
0
27 Feb 2018
Fully Decentralized Multi-Agent Reinforcement Learning with Networked
  Agents
Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents
Kaipeng Zhang
Zhuoran Yang
Han Liu
Tong Zhang
Tamer Basar
43
582
0
23 Feb 2018
More Robust Doubly Robust Off-policy Evaluation
More Robust Doubly Robust Off-policy Evaluation
Mehrdad Farajtabar
Yinlam Chow
Mohammad Ghavamzadeh
OffRL
15
264
0
10 Feb 2018
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
41
2,775
0
19 Aug 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
50
614
0
03 Mar 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
1