Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.03296
Cited By
Interpretable Explanations of Black Boxes by Meaningful Perturbation
11 April 2017
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Explanations of Black Boxes by Meaningful Perturbation"
29 / 29 papers shown
Title
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
125
1
0
14 Apr 2025
Class-Dependent Perturbation Effects in Evaluating Time Series Attributions
Gregor Baer
Isel Grau
Chao Zhang
Pieter Van Gorp
AAML
57
0
0
24 Feb 2025
Generating visual explanations from deep networks using implicit neural representations
Michal Byra
Henrik Skibbe
GAN
FAtt
51
0
0
20 Jan 2025
Faithful Counterfactual Visual Explanations (FCVE)
Bismillah Khan
Syed Ali Tariq
Tehseen Zia
Muhammad Ahsan
David Windridge
46
0
0
12 Jan 2025
Attribution Analysis Meets Model Editing: Advancing Knowledge Correction in Vision Language Models with VisEdit
Qizhou Chen
Taolin Zhang
Chengyu Wang
Xiaofeng He
Dakan Wang
Tingting Liu
KELM
84
3
0
19 Aug 2024
Interpreting Low-level Vision Models with Causal Effect Maps
Jinfan Hu
Jinjin Gu
Shiyao Yu
Fanghua Yu
Zheyuan Li
Zhiyuan You
Chaochao Lu
Chao Dong
CML
100
2
0
29 Jul 2024
MambaLRP: Explaining Selective State Space Sequence Models
F. Jafari
G. Montavon
Klaus-Robert Müller
Oliver Eberle
Mamba
136
9
0
11 Jun 2024
CONFINE: Conformal Prediction for Interpretable Neural Networks
Linhui Huang
S. Lala
N. Jha
149
2
0
01 Jun 2024
Listenable Maps for Zero-Shot Audio Classifiers
Francesco Paissan
Luca Della Libera
Mirco Ravanelli
Cem Subakan
47
4
0
27 May 2024
Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
Shahin Atakishiyev
Mohammad Salameh
Randy Goebel
124
6
0
18 Mar 2024
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
161
90
0
18 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
78
82
0
17 Mar 2020
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
Nasser M. Nasrabadi
42
98
0
10 Mar 2020
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
185
19,796
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
44
945
0
01 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
480
5,868
0
08 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
422
16,765
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
123
9,266
0
14 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
37
532
0
07 Dec 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
624
149,474
0
22 Dec 2014
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
100
1,279
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
144
4,653
0
21 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
120
3,261
0
05 Dec 2014
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
79
1,959
0
26 Nov 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
269
43,511
0
17 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
952
39,383
0
01 Sep 2014
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
215
43,290
0
01 May 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
133
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
221
15,825
0
12 Nov 2013
1