Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.03024
Cited By
Tight Lower Bounds for Differentially Private Selection
10 April 2017
Thomas Steinke
Jonathan R. Ullman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tight Lower Bounds for Differentially Private Selection"
23 / 23 papers shown
Title
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
46
16
0
13 Mar 2023
Tight Data Access Bounds for Private Top-
k
k
k
Selection
Hao Wu
O. Ohrimenko
Anthony Wirth
26
0
0
31 Jan 2023
Answering Private Linear Queries Adaptively using the Common Mechanism
Yingtai Xiao
Guanhong Wang
Danfeng Zhang
Daniel Kifer
77
7
0
30 Nov 2022
Generalized Private Selection and Testing with High Confidence
E. Cohen
Xin Lyu
Jelani Nelson
Tamas Sarlos
Uri Stemmer
28
6
0
22 Nov 2022
Private Online Prediction from Experts: Separations and Faster Rates
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
FedML
32
18
0
24 Oct 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
47
26
0
17 May 2022
The Price of Differential Privacy under Continual Observation
Palak Jain
Sofya Raskhodnikova
Satchit Sivakumar
Adam D. Smith
33
52
0
01 Dec 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
30
48
0
24 Jun 2021
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
43
20
0
08 Nov 2020
Permute-and-Flip: A new mechanism for differentially private selection
Ryan McKenna
Daniel Sheldon
112
47
0
23 Oct 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
48
42
0
19 Oct 2020
On Distributed Differential Privacy and Counting Distinct Elements
Lijie Chen
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
33
29
0
21 Sep 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
41
115
0
11 Jun 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
40
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
28
58
0
14 Apr 2020
The power of synergy in differential privacy: Combining a small curator with local randomizers
A. Beimel
Aleksandra Korolova
Kobbi Nissim
Or Sheffet
Uri Stemmer
34
14
0
18 Dec 2019
Distributed Differential Privacy via Shuffling
Albert Cheu
Adam D. Smith
Jonathan R. Ullman
David Zeber
M. Zhilyaev
FedML
53
347
0
04 Aug 2018
The Limits of Post-Selection Generalization
Kobbi Nissim
Adam D. Smith
Thomas Steinke
Uri Stemmer
Jonathan R. Ullman
39
26
0
15 Jun 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
149
0
01 May 2018
Scalable Private Learning with PATE
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
43
607
0
24 Feb 2018
The Price of Selection in Differential Privacy
Mitali Bafna
Jonathan R. Ullman
46
30
0
09 Feb 2017
The Power of Linear Reconstruction Attacks
S. Kasiviswanathan
M. Rudelson
Adam D. Smith
AAML
62
54
0
08 Oct 2012
1