ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02771
  4. Cited By
Group Importance Sampling for Particle Filtering and MCMC

Group Importance Sampling for Particle Filtering and MCMC

10 April 2017
Luca Martino
Victor Elvira
G. Camps-Valls
ArXivPDFHTML

Papers citing "Group Importance Sampling for Particle Filtering and MCMC"

12 / 12 papers shown
Title
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
25
154
0
25 Jul 2021
Compressed particle methods for expensive models with application in
  Astronomy and Remote Sensing
Compressed particle methods for expensive models with application in Astronomy and Remote Sensing
Luca Martino
Victor Elvira
J. Lopez-Santiago
Gustau Camps-Valls
18
4
0
18 Jul 2021
Compressed Monte Carlo with application in particle filtering
Compressed Monte Carlo with application in particle filtering
Luca Martino
Victor Elvira
24
36
0
18 Jul 2021
Advances in Importance Sampling
Advances in Importance Sampling
Victor Elvira
Luca Martino
AI4TS
56
103
0
10 Feb 2021
Deep Importance Sampling based on Regression for Model Inversion and
  Emulation
Deep Importance Sampling based on Regression for Model Inversion and Emulation
F. Llorente
Luca Martino
D. Delgado
G. Camps-Valls
42
19
0
20 Oct 2020
Marginal likelihood computation for model selection and hypothesis
  testing: an extensive review
Marginal likelihood computation for model selection and hypothesis testing: an extensive review
F. Llorente
Luca Martino
D. Delgado
J. Lopez-Santiago
36
84
0
17 May 2020
Probabilistic Regressor Chains with Monte Carlo Methods
Probabilistic Regressor Chains with Monte Carlo Methods
Jesse Read
Luca Martino
BDL
UQCV
AI4CE
LRM
35
11
0
18 Jul 2019
Robust Covariance Adaptation in Adaptive Importance Sampling
Robust Covariance Adaptation in Adaptive Importance Sampling
Yousef El-Laham
Victor Elvira
M. Bugallo
27
17
0
31 May 2018
Improving the efficiency and robustness of nested sampling using
  posterior repartitioning
Improving the efficiency and robustness of nested sampling using posterior repartitioning
Xi Chen
Michael P. Hobson
Saptarshi Das
P. Gelderblom
37
9
0
16 Mar 2018
Metropolis Sampling
Metropolis Sampling
Luca Martino
Victor Elvira
31
25
0
15 Apr 2017
High-dimensional Filtering using Nested Sequential Monte Carlo
High-dimensional Filtering using Nested Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
40
22
0
29 Dec 2016
Sequential estimation of intrinsic activity and synaptic input in single
  neurons by particle filtering with optimal importance density
Sequential estimation of intrinsic activity and synaptic input in single neurons by particle filtering with optimal importance density
Pau Closas
A. Guillamón
22
7
0
12 Nov 2015
1