Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.11008
Cited By
v1
v2 (latest)
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
31 March 2017
Gintare Karolina Dziugaite
Daniel M. Roy
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data"
39 / 39 papers shown
Title
Temperature is All You Need for Generalization in Langevin Dynamics and other Markov Processes
I. Harel
Yonathan Wolanowsky
Gal Vardi
Nathan Srebro
Daniel Soudry
AI4CE
62
0
0
25 May 2025
An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear Models
Jialin Mao
Itay Griniasty
Yan Sun
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
101
0
0
13 May 2025
A Combinatorial Theory of Dropout: Subnetworks, Graph Geometry, and Generalization
Sahil Rajesh Dhayalkar
124
1
0
20 Apr 2025
SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting
Linqi Yang
Xiongwei Zhao
Qihao Sun
Ke Wang
Ao Chen
Peng Kang
3DGS
127
6
0
07 Mar 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Romain Chor
Milad Sefidgaran
Piotr Krasnowski
269
2
0
21 Feb 2025
Universal Sharpness Dynamics in Neural Network Training: Fixed Point Analysis, Edge of Stability, and Route to Chaos
Dayal Singh Kalra
Tianyu He
M. Barkeshli
119
7
0
17 Feb 2025
Model Diffusion for Certifiable Few-shot Transfer Learning
Fady Rezk
Royson Lee
Henry Gouk
Timothy M. Hospedales
Minyoung Kim
122
0
0
10 Feb 2025
Evolutionary Optimization of Model Merging Recipes
Takuya Akiba
Makoto Shing
Yujin Tang
Qi Sun
David Ha
MoMe
289
125
0
28 Jan 2025
Enhancing Robust Fairness via Confusional Spectral Regularization
Gaojie Jin
Sihao Wu
Jiaxu Liu
Tianjin Huang
Ronghui Mu
194
1
0
22 Jan 2025
Seeking Consistent Flat Minima for Better Domain Generalization via Refining Loss Landscapes
Aodi Li
Liansheng Zhuang
Xiao Long
Minghong Yao
Shafei Wang
483
1
0
18 Dec 2024
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
143
1
0
25 Nov 2024
Multi-View Majority Vote Learning Algorithms: Direct Minimization of PAC-Bayesian Bounds
Mehdi Hennequin
Abdelkrim Zitouni
K. Benabdeslem
H. Elghazel
Yacine Gaci
70
0
0
09 Nov 2024
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurelien Lucchi
AI4CE
121
0
0
04 Nov 2024
Can Optimization Trajectories Explain Multi-Task Transfer?
David Mueller
Mark Dredze
Nicholas Andrews
124
1
0
26 Aug 2024
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks
Amit Peleg
Matthias Hein
49
0
0
04 Jul 2024
Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss
Yi-Shan Wu
Yijie Zhang
Badr-Eddine Chérief-Abdellatif
Yevgeny Seldin
73
2
0
23 May 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
122
5
0
26 Apr 2024
Flatness Improves Backbone Generalisation in Few-shot Classification
Rui Li
Martin Trapp
Talal Alrawajfeh
Arno Solin
108
0
0
11 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
88
6
0
04 Apr 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
91
4
0
13 Feb 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
129
2
0
29 Nov 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
124
0
0
08 Nov 2023
Global Convergence Rate of Deep Equilibrium Models with General Activations
Lan V. Truong
99
2
0
11 Feb 2023
Improving Multi-task Learning via Seeking Task-based Flat Regions
Hoang Phan
Lam C. Tran
Ngoc N. Tran
Nhat Ho
Tuan Truong
Qi Lei
Nhat Ho
Dinh Q. Phung
Trung Le
205
11
0
24 Nov 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
105
4
0
06 Sep 2022
On Rademacher Complexity-based Generalization Bounds for Deep Learning
Lan V. Truong
MLT
91
13
0
08 Aug 2022
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
108
144
0
12 Mar 2020
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
135
774
0
15 Mar 2017
Exponentially vanishing sub-optimal local minima in multilayer neural networks
Daniel Soudry
Elad Hoffer
155
97
0
19 Feb 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,635
0
10 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
96
774
0
06 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
429
2,945
0
15 Sep 2016
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes
Carlo Baldassi
C. Borgs
J. Chayes
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
60
168
0
20 May 2016
Subdominant Dense Clusters Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses
Carlo Baldassi
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
62
128
0
18 Sep 2015
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
116
1,243
0
03 Sep 2015
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Behnam Neyshabur
Ruslan Salakhutdinov
Nathan Srebro
ODL
91
309
0
08 Jun 2015
On Graduated Optimization for Stochastic Non-Convex Problems
Elad Hazan
Kfir Y. Levy
Shai Shalev-Shwartz
79
117
0
12 Mar 2015
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
292
591
0
27 Feb 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
99
662
0
20 Dec 2014
1